Quantitative Observational Practice in Family Studies (3 of 3)

Panayiotis (Panos) Georgiou, Shri Narayanan, Gayla Margolin, Brian Baucom, Matt Black, James Gibson, Nassos Katsamanis, Jeremy Lee, & Bo Xiao

Signal processing for Communication Understanding and Behavior Analysis (SCUBA)
Signal Analysis and Interpretation Laboratory (SAIL), Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089

georgiou@sipi.usc.edu

Goal:
- Transform observational behavior analysis
- Through computational framework
- Modeling of emotionally-rich human interactions
- Signal processing and machine learning
- Existing family therapy data
- Alleviate the tedium of manual annotation
- Offer new analysis capabilities and empower the mental health experts

Significance: USA-10mil people receive psychotherapy every year and state of the art hasn’t changed for decades

Data used
- Audio/Lexical and Visual subsets used
 - Use top/bottom 20% for audio, lexical and 25% for video
 - Choose subsets with acceptable audio/video qualities
 - Used 6 codes with highest human agreement
 - Some distributions skewed and not very separable

Audio/Lexical and Visual subsets used
- Use top/bottom 20% for audio, lexical and 25% for video
- Choose subsets with acceptable audio/video qualities
- Used 6 codes with highest human agreement
- Some distributions skewed and not very separable

Multiple Instance Learning: Instances
- We consider each session a “bag” of “instances”
- Instances are varying-length speaker turns or equal-length windows
- Each instance conveys particular behaviors of interest with varying degrees
- MIL is a method for identifying the “salient instances”, i.e., the local events that most greatly affect the final rating assigned to the session

Session Level Feature Extraction
- Salient feature identification:
 - Bag of instances
 - Distance of session features to salient prototype features

Summary and Future work
- Explored saliency in MIL framework
- Explored saliency in multiple modalities
- Explored low-level instance features and deriving high-level session features
- Temporal dynamics of salient events for reactivity
- Explore alternative measures for saliency, such as knowledge inspired signal cues (e.g., laughter, crying)

Citations. Acknowledgments
- Full list of publications at http://scuba.usc.edu
- Work funded by NSF SHB program