Estimation of the movement trajectories of non-crucial articulators based on the detection of crucial moments and physiological constraints

Jangwon Kim, Sungbok Lee, Shrikanth S. Narayanan
jangwon@usc.edu, sungbok@usc.edu, shri@sipi.usc.edu

[Supported by NSF IIS-1116076 and NIH DC007124]

Introduction

Question: Is the postural variability of non-crucial articulators a by-product of controls of crucial articulators and physiological constraints in the vocal tract or the results of active controls as a function of emotion?

Objective 1: Develop a mathematical model that estimates the movements of (linguistically) non-crucial articulators using the time and position of crucial articulators and physiological constraints among the articulators.
- For /p/, lips are crucial, and tongue points is non-crucial articulator.
- Eventually to understand the control mechanism of non-crucial articulators better.

Objective 2: Automatic detection of crucial articulatory moments on articulatory trajectories in an utterance.
- To reduce the time to determine time labels for phonemes on articulatory trajectories.
- Simple approach to relying on only physical properties of crucial articulators, because a large amount of phonetic labels on articulatory trajectories can not be easily obtained.

Electromagnetic Articulography database

- The NDI WAVE system
- 6 articulatory sensors: tongue tip (TT), tongue blade (TB), tongue dorsum (TD), upper lip (UL), lower lip (LL), lower incisor (JAW)
- 8 sentences x 5 repetitions
- A female native speaker of American English
- 5 acted emotions: neutrality, anger, happiness, sadness, fear
- Post processing for occlusal plane correction and smoothing on articulatory trajectories
- Emotion evaluation by 11 native speakers of American English

Table 1: The number of utterances for each emotion label

<table>
<thead>
<tr>
<th># Arti</th>
<th>Neutrality</th>
<th>Anger</th>
<th>Happiness</th>
<th>Sadness</th>
<th>Fear</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.11</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.76</td>
<td>0.77</td>
<td>0.80</td>
<td>0.80</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td>0.84</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>42</td>
</tr>
</tbody>
</table>

Figure 1: O5(t) (red triangle line), and CSj(t) (blue asterisk line) and vertical trajectory (green square line) of crucial articulators for “nine one five.” Vertical dash-dot line (magenta) indicates the aligned crucial time point for each phone.

Figure 2: An example plot of Crucial time points (non-zero values) for each articulatory trajectory.

Figure 3: An example plot of the original and estimated vertical trajectories of the tongue tip.

Forced alignment of crucial points

- The proposed method uses constriction score CSj(t) and opening score O5(t) driven from the physical properties inherent in the articulatory movements. Crucality score Cj(t) is:

\[
C_j(t) = \frac{\theta_j(t) - \min(\theta_j)}{\max(\theta_j) - \min(\theta_j)} - \frac{S_j(t) - \min(S_j)}{\max(S_j) - \min(S_j)}
\]

where \(S_j = [S_j(1), S_j(2), \ldots, S_j(N)] \) is the sequence of the tangential speed of the i-th articulator; \([\theta_1, \theta_2, \ldots, \theta_N] \) is the sequence of the acute angles of the i-th articulator; N is the number of frames for an utterance; t is the time frame.

- Finally, CSj(t) and O5j(t) are represented as a function of Cj(t) and a normalized local excursion score Ei(t):

\[
CS_j(t) = C_j(t) \times |E_i(t) - 1|
\]

\[
O5_j(t) = C_j(t) \times E_i(t)
\]

where \(E_i(t) \) is the degree of articulatory opening between two preceding and following extrema. \(E_i(t) \in [0, 1] \)

- Optimal crucial time points, one point for each phone, are determined by maximizing the sum of CSj(t) or O5j(t) (one score for each phone) using the Viterbi algorithm.

Estimation of the trajectories of non-crucial articulators

- \(f_i(t) \) and \(\hat{f}_i(t) \) are the true and estimated trajectory of i-th (non-crucial) articulator at time t.

\[
\hat{f}_i(t) = f_i(t) \cdot K_i(t) + \hat{f}_i(t)(1 - K_i(t))
\]

where \(K_i(t) \in [0, 1] \) is a weighting function on the contextual constrained motions.

- \(\hat{f}_i(t) \) is physiologically constrained motion of the i-th articulator. It is modeled by a linear regression of the positions of all crucial articulators at time t. Ex: Linear transformation of positions of the jaw and the lower lip.