Co-registration of articulographic and real-time magnetic resonance imaging data for multimodal analysis of running speech

Jangwon Kim, Adam Lammert, Michael Proctor, Shrikanth Narayanan
jangwon@usc.edu, lammert@usc.edu, mike.i.proctor@gmail.com, shri@sipi.usc.edu

[Supported by NIH and NSF grants]

Introduction

Motivation:
- Electromagnetic articulography (EMA) and real-time MRI (rtMRI) provide complementary imaging advantages
 - EMA: higher temporal resolution & flesh-point tracking
 - rtMRI: higher spatial resolution & complete midsagittal view
- Combine advantages of each modality by fine-grain spatial and temporal alignment in order to maximize preserved information (e.g., token-wise variability)

Potential applications:
- Assessment of completed tongue contours from EMA
- Improved palate traces for EMA (and other structural characteristics)
- Estimated flesh-point tracking in rtMRI
- Improved interpolation of rtMRI video frames

Experimental setup

Database: EMA TIMIT & rtMRI dataset

- EMA and rtMRI data are recorded with the same stimuli (460 sentences from Mocha TIMIT database) in different time.
- Articulatory data + parallel speech waveform
- Electromagnetic articulography (EMA):
 - 6 sensor trajectories: tongue tip, tongue body (TB), tongue dorsum (TD), upper lip, lower lip(LL), lower incisor (Jaw)
 - frame rate: 100 frame/sec
- Real-time MRI:
 - 68 x 68 pixels in the midsagittal plane of head and neck
 - frame rate: 23.180 frame/sec

Alignment methods

Spatial alignment: Align EMA palate trace to rtMRI image
- Manual initialization of placement
- Brute-force search for optimal rigid transformation
- Objective: maximize contrast across palate trace

Obj. fn.: \(\arg \min_{p_{ij}} f(i) = p_{ij} / P_{ij} \) is a pixel at \((i,j)\) in the image

Temporal alignment of articulatory data:
- Canonical Time Warping (CTW): Canonical Correlation Analysis (CCA) + Dynamic Time Warping (DTW)
- CTW allows the flexibility of dimensionality of two feature streams. It can align with different number (and nature) of features of two feature streams

Articulatory alignment results (CTW)
- We need temporal alignment with more EMA sensors and more information in rtMRI.

Articulatory alignment results (DTW)
- DTW on the velocity of mean pixel intensity for rtMRI and the velocity of corresponding sensor trajectories. \(\gamma \): vertical axis

Conclusions & future work

Conclusion:
- Alignment performance:
 - DTW: useful for knowledge-based features
 - CTW performs well with mean pixel intensity features
- CTW fails with all pixels in the vocal tract, probably because of the noise of MRI images and nonlinear relationship
- Articulatory features: velocity > position

Future work:
- (Noise-robust) feature developments / Noise reduction
- Automatic selection of pixel regions in rtMRI video
- Evaluation method for comparing the alignment performances of different methods and features.