Unsupervised Speaker Diarization Using Riemannian Manifold Clustering

Che-Wei Huang, Bo Xiao, Panayiotis Georgiou, Shrikanth Narayanan
Signal Analysis and Interpretation Laboratory (SAIL), Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
{cheweihu,boxiao}@usc.edu, {georgiou, shri}@sipi.usc.edu

Motivations & Objectives
- To perfectly cluster short segments
 - Likelihood-based clustering not good on short segments
- Geometric point of view
 - Non-convexity of speaker clusters
 - Faithful geodesic metric
- Speaker clustering by Riemannian manifold clustering
- Suppress sparsity issue in local samples
- Stabilize performance over parameter tuning

Hypothesis: Speech segments from different speakers form distinct manifolds

Dataset & Experiment
- Microphone interview from NIST 2010 SRE
- 2477 5-min sections ~ 206 hours
- Oracle segmentation
- Known # of speakers
- 20 MFCC w/ frame size 40ms & frame step 20ms, w/o normalization
- Overlapped speeches clustered, not evaluated
- Segments as single multivariate Gaussians

Baseline & Proposal
- Riemannian LLE as the baseline
 - Generalization of spectral clustering
 - Built-in geodesic metric
 - Data samples x_1, \ldots, x_n
 - Known number of clusters m
 - Riemannian geodesic metric $\| \cdot \|_{x_i}$
 - $N(i)$ index set of k-NN of x_i
 - $c_i(w_i) = \| \sum_{j=1}^{w_i} w_{ij} x_j - x_i \|_{x_i}^2$
 - $\arg\min_{w_i} c_i(w_i)$ subject to $\sum_{j=1}^{w_i} w_{ij} = 1$ and $w_{ij} = 0$ if $j \not\in N(i)$
 - Similarity matrix $W = [w_1, \ldots, w_n]^T$
 - Graph Laplacian $L = (I - W)/(I - W)$
 - 2nd to $(m + 1)$th smallest eigenvectors x_1, \ldots, x_m of L
 - Embedded coord.s $X = [x_1, \ldots, x_m]^T$
 - Kmeans clustering for rows of X with m centroids
 - Label of ith row = label of x_i
 - Issues:
 - Unknown choice of $k \sim f(\text{intri.dim})$
 - GMM vs Single multivariate Gaussian

Baseline & Proposal
- Manifold of Gaussian pdfs = sphere in Hilbert space
- Schematic diagrams before and after length constraint
 - Data’s self-expressiveness

Baseline: Riemannian LLE
- Best at $k = 23$ w/ DER = 4.607%
- Difficulties:
 - High intrinsic dimensionality \rightarrow high k
 - Sparse local samples
 - Need GMM for long segments
 - Narrow range of optimal k

Proposal:
- Impose length constraint on segments
- Advantages:
 - Higher local density \rightarrow safer for high k
- Disadvantage:
 - Potentially higher computational complexity

Comparisons
- 1s length constraint
- Best at $k = 57$ w/ DER = 0.88%
- Stable under 1% for wide range of k

Conclusions
- Effective Riemannian manifold modeling
- Performance less sensitive to the parameter
- Potentially higher computational complexity

Future work
- Performance with imperfect VAD
- Performance with imperfect segmentation
- Number of clusters estimation
- Optimal length constraint
- Automate choice of k
- Deal with overlapped speeches
- Originally mono channel data

Acknowledgement
This research is supported by NSF, NIH and DARPA.