Coordination of speech gestures and syllable structure
Syllabification

• As Ladefoged notes, English speakers (and speakers of other languages) generally agree about the number of syllables in a word. Some problematic cases:

• (a) "prism, mysticism"
 (b) "peel, seal"
 (c) "hire, fire, hour"
 (d) "mediate, heavier, neolithic"

• How can syllables be defined phonetically?
 • Sonority Peaks
 • Jaw cycles
 • Gestural Coordination
Sonority Peaks

- The number of syllables corresponds to the number of distinct amplitude peaks in the acoustic signal. Why?
- Each peak corresponds to the nucleus of a syllable.
- Sonority principle can account for relatively clear cases.
- It could also explain the disagreements in (1). The "extra" syllable corresponds to a local peak of amplitude that is greater what precedes it, but is not as high as a typical nucleus. E.g,
Problems for Sonority

hidn emz

'hidden aims'

hidnc imz

'hid names'

'sport'

'support'

'bray'

'beret'
Jaw Cycles

• Frame-Content Theory (McNeilage & Davis)

• Speech develops in the infant initially through the oscillation of the jaw.

• Each cycle of the jaw oscillation corresponds to a syllable and is called by M&D ‘the frame.’

• The individual consonants and vowels are “the content” and develop later.

• For adults, the nucleus corresponds to the downward phase of the jaw cycle, the onset and coda correspond to the upward phase.

• In careful speech, jaw behavior differentiates "support" from "sport."

• However, for faster, more casual speech, the "extra" jaw deflection for "support" is absent.
How are gestures glued to one another in time?

- Relative timing of gestures carries information.
- How is appropriate relative timing maintained?
- What is the glue?
- Should make predictions about observed gesture combinations.
Planning intergestural timing
(Saltzman, Nam, Goldstein)

- Each gesture is associated with a planning oscillator, or clock, responsible for triggering that gesture’s activation.

- Relative phase of oscillators (and therefore time of triggering) is controlled by coupling the clocks to one another.
Why clocks and coupling?

- Clocks are nonlinear oscillatory dynamical systems. They exhibit **entrainment:** They **synchronize** with one another.

Demo: Bahraminasab

http://www.youtube.com/watch?v=W1TMZASCR-I
Generality of Entrainment

• Applies to living systems, including humans.
 http://www.youtube.com/watch?v=4FNolDgNE6o

• Entrainment of clocks within an individual or across individuals

• Coupling doesn’t have to be mechanical.
 It can be informational (Saltzman, 1995).
Speech entrainment across talkers

- Development of technique for measuring articulator kinematics from two talkers simultaneously.

 - One Carstens EMA, one ND WAVE

 - Talkers (1 M, 1 F) sat 2 m apart facing one another

 - M: “cop top cop top...”
 - F: “top cop top cop...”

Tiede, Kroos, Bundgaard-Nielsen, Gilbert, Attina, Kasiopa, Vatikiotis-Bateson, Best (2010)
BEFORE Entrainment

AFTER Entrainment
Modes of coupling

• Systems of coupled oscillators exhibit distinct modes of synchronization:
 • frequency-locking
 • phase-locking

• These modes have been shown to underlie the coordination of movements of multiple limbs in human action. (e.g., Turvey, 1990; Kelso, 1995).

• The same modes can be used to coordinate speech actions and form an account of syllable structure.
Synchronization modes for limb coordination: phase-locking

- Two relative phase modes (or attractors) are spontaneously available (require no learning) Haken, Kelso & Bunz, 1985
 - 0° (in phase) most stable
 - 180° (anti-phase)

- Oscillation frequency (rate) is a control parameter:
 - Spontaneous transitions to most stable mode (0°) as frequency increases.
 - Fluctuations in phase during transition interval.

Turvey, 1990
Modes & Syllable Structure

• If a basic consonant constriction (C) gesture and a vowel (V) constriction gesture are to be coordinated in a spontaneously available mode, there are just two possibilities:

 • in-phase
 • hypothesized for C-V (onset) simplest, most stable, accessible
 • anti-phase
 • hypothesized for V-C (coda)
Evidence for C-V and V-C modes

Onset C and V gestures begin synchronously \cite{lofqvist1999}; hypothesize that clocks are in-phase.

Coda C begins later than V; hypothesize that clocks are anti-phase.
Gestural Score

“two back”

Audio waveforms and gestures at different time intervals.
Syllable Structure Generalizations

• **Universality:**
 CV syllable is possibly only universal type

• **Combinatorial freedom:**
 • Onsets & rime typically combine relatively freely.
 • Combinations within onset and rime can be more restricted

• **Acquisition:**
 CV acquired earlier by infant than VC

• **Weight:**
 Onsets rarely contribute to weight. Codas frequently do
Universality of CV structure

- All languages have CV syllables, but not all languages have VC structures (e.g. Clements, 1990).

- This can be accounted for by the fact that in-phase is the more accessible, more stable mode.
Combinatorial Freedom

- Combination is free where the coupling mode is maximally accessible without learning (in-phase).

- Combinations are most restricted where learning is required.

<table>
<thead>
<tr>
<th></th>
<th>CV: onset-rime</th>
<th>VC: nucleus-coda</th>
<th>CC: within onset,coda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom</td>
<td>in-phase</td>
<td>anti-phase</td>
<td>other</td>
</tr>
<tr>
<td>Accessibility</td>
<td>no learning</td>
<td>no learning, but less accessible</td>
<td>particular combinations must be learned</td>
</tr>
</tbody>
</table>
Acquisition of syllable structure
(Nam, Goldstein & Saltzman, in press)

• Infants develop onsets (CV) before codas (VC) in all languages. (e.g. Vihman & Ferguson, 1987; Fikkert, 1994)

• Lag in acquisition of codas is shorter in languages that make more frequent use of VC (Roark & Demuth 2000).

• These facts are predicted by a model of a learning agent that includes both:
 • Greater accessibility in-phase mode
 • Attunement to C<->V phase in the ambient language
Planning model (Saltzman, Nam, Goldstein)

- Phonological input to planning is a **coupling graph:**
 - **NODES:** Specification of gestures and the associated planning oscillators
 - **EDGES:** coupling functions between pairs of planning oscillators.

- At the beginning of planning process, oscillators are set into motion at random phases.

- Coupling forces specific to graph cause the oscillators to settle at stabilized relative phases (Saltzman & Byrd, 2000).

- Once stabilized, timing oscillators trigger the activation of their associated gesture(s).
Timing and Ig-specific syllabification: CC clusters in onset

• If onset is defined by an in-phase relation between C gesture and V, then all onset C gestures should be synchronous with V (and therefore with each other).

• Multiple constriction gestures in onset cluster (e.g., “spats”).

 • Gestures must be at least partially sequential to afford perceptual recoverability.

• What in the coupling graph identifies them as both in the onset?
Competitive coupling hypothesis
(Browman & Goldstein, 2000)

• Specifications in the coupling graph can compete with one another

• C-V coupling
 • All C gestures in onset coupled in-phase with the V.

• C-C coupling
 • C gestures also coupled sequentially (eccentric)

• Prediction: Observed coordination should reveal the presence of both couplings. As Cs are added to an onset:
 • Rightmost C (C_n) should shift later with respect to the vowel.
 • Leftmost C (C_1) should shift earlier with respect to the vowel.
Modeling shift with competitive coupling

results of competition

C-V phasing

C_1 shifts left

C_n shifts right

Add an additional coordination (C-C phasing)
Evidence for Rightward shift of C_n.

"pea pots" vs "pea spots"
Example: “spat”
Rightward shift of C_n as diagnostic for onset?

- If a consonant sequence is syllabified as part of an onset, then it should exhibit rightward shift.

- Georgian and Tashlhiyt Berber are languages in which words can begin with sequences of 3 obstruents.

- But they differ as in syllabification of such words:
 - Georgian Cs are complex onsets
 - Berber only allows a single C in onset, other Cs constitute nuclei of additional syllables.

- Do Georgian and Berber differ in rightward shift?
Georgian: Rightward shift EMA data (w/Chitoran)

Lag: Target (V) - Target (C_n)

p < .001

2 speakers

/p/ Lip Aperture
/t/ Tongue Tip Constriction Degree
/k/ Tongue Dorsum Constriction Degree
/V/ Tongue Body Constriction Degree

/karebi/ /t'skarebi/ /pt'skaredi/ /riala/ /k'riala/ /t'sk'riala/
Tashlhiyht Berber: Rightward shift EMA data (w/Selkirk)

Lag: Target (V) - Target (Cₙ) ms.

<table>
<thead>
<tr>
<th></th>
<th>Lag (ms)</th>
<th>2 speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/m/</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>/t/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/s/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/V/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence for complex onsets

• Differences between Georgian and Berber provide tentative support that c-center can be used as diagnostic for complex onset structures.

• Support from other languages:
 • Italian: /sC/ vs. /Cl/ (Hermes, 2013)
 • Moroccan Arabic (Shaw et al. 2010)
 • Romanian (Marin 2012)
C and V gesture valences

• C and V gestures are differentiated by
 • degree of constriction (V is wider)
 • dynamic stiffness (V takes longer to get to target)
 • activation interval (V still active after C released)

• Nature of these differences is such that C and V gestures can be triggered synchronously and still be both be recoverable by listeners (Mattingly, 1981).

• These gestural properties, together with the stability of in-phase coupling gives rise to valence of C and V gestures -- they combine freely with each other in C-V structures.
What gestures can serve as syllable nuclei?
Is there a language in which any segment can be syllabic?

Examples

- **Voiced fricative**: /\textipa{tśbGt}/ [ts.b\textipa{Gt}] « you paint »
- **Voiceless fricative**: /\textipa{t-sti}/ [ts.ti] « she chose »
- **Voiced stop**: /\textipa{t-g°ra}/ [tg°.ra] « she took »
- **Voiceless stop**: /\textipa{tk.mi}/ [tk.mi] « she
Figure 1. Audio signal and spectro of one repetition of [sfqqst] by R_R

Figure 2. Audio signal and spectro of one repetition of [tfsxt] by A_R
Schwa Unstable

- within one same subject and one same form.

Acoustic waveform and spectrogram of two repetitions of sfqqst « irritate him » by E_M one with internal schwa (left) and one with final schwa (right).
This same subject may realize long voiceless sequences with no vowel at all. This is the case for instance for the items \textit{fqqs}, \textit{tfktstt} and \textit{tftXtstt}.

\begin{center}
\begin{tabular}{cccccccc}
\hline
\textit{t} & \textit{f} & \textit{t} & \chi & \textit{t} & \textit{s} & \textit{tt} \\
\hline
\end{tabular}
\end{center}

\textit{Acoustic waveform and spectrogram of one repetition of \textit{[tftXtstt]} « fadeaway » by E._M.}
Evidence for syllabication: Versification

• TB versification distinguishes between heavy and light syllables (Jouad 1983).

• In TB poetry it is common for all the lines of a piece to be sung to the same tune.

• If a tune is comprised of n successive notes, a text with more than n syllables cannot be sung to it.

• (See Dell & Elmedlaoui 2002 and the references therein)
Sequences sung to a tune

I present below the parsing of three lines of *Immi nna* “my dear mother” sung by **Iznzarn** (1970)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>im</td>
<td>mi</td>
<td>n</td>
<td>na</td>
<td>kf</td>
<td>rab</td>
<td>biG</td>
<td>ta</td>
<td>sa</td>
<td>wa</td>
<td>la</td>
<td>wu</td>
<td>li</td>
<td></td>
</tr>
<tr>
<td>tz*</td>
<td>da</td>
<td>tz</td>
<td>dm</td>
<td>ta</td>
<td>g°md</td>
<td>Glh</td>
<td>ma</td>
<td>wa</td>
<td>la</td>
<td>sm</td>
<td>mi</td>
<td>di</td>
<td></td>
</tr>
<tr>
<td>ad</td>
<td>da</td>
<td>ln</td>
<td>sa</td>
<td>sm</td>
<td>mid</td>
<td>wat</td>
<td>sm</td>
<td>ms</td>
<td>tr</td>
<td>fl</td>
<td>la</td>
<td>Gi</td>
<td></td>
</tr>
</tbody>
</table>

* This syllable and the following three are emphatic
In-phase C-C syllables in Berber?

• Any segment may appear as nucleus in Tashlhiyt Berber (Dell & Elmedlaoui, 1985).
 • [tu.da] ‘suffice’ [tb.da] ‘begin’

• Expected graphs?
CC vs. CV syllables

Lip Aperture

Tongue Tip Constriction

Time
CC syllables

- C gestures are not in-phase
- If they were, they might not be able to contrast in order
- Alternative graphs: Note abstract syllable oscillator
CC in onset vs. coda: possible coupling graph differences and weight

• Hypothesis: No competitive coupling in coda (for English)

Why?

• Perhaps the weaker anti-phase coupling doesn’t attract the (more remote) as strongly as does the in-phase coupling of onsets.
Onset-Coda asymmetry in weight
(Nam, 2007)

- **Onset** Cs typically do not contribute to syllable weight.
- **Coda** Cs may or may not depending on the language.

- If weight is related to (syllable) duration, then proposed coupling structures can account for the difference between onset and coda consonants in weight.
- With synchronous onset coupling, effect of rightward shift is that adding a C to onset does not increase syllable duration by the duration of the C (more like one-half the C duration).

Languages in which coda Cs do not bear weight are predicted to show competitive coda coupling (e.g., Malayalam, Broselow et al. (1997))
C-Center in coda?
(Marin & Pouplier, 2010)

• Predictions of coupling asymmetry model:

Onsets:
• c-center stability
• rightward shift

Codas:
• left edge stability
• no leftward shift
Results: shift

- /s-stop/ support asymmetry
- clusters with liquids do not (can be explained by a graph topology that explicitly incorporates multiple gestures for /l/)

\[
\begin{align*}
\text{Shift 67 ms} & \quad \text{s} \quad \text{scab} \\
\text{Shift 9 ms} & \quad \text{k} \quad \text{cab} \\
\text{bask} & \quad \text{k} \quad \text{s} \\
\text{bass} & \quad \text{s} \\
\end{align*}
\]
Timing stability in onsets vs. codas

Timing between C gestures is more stable in onset clusters than in coda clusters (Byrd, 1996).
Simulation
(Nam, 2007)

- Hypothesis: Loop topology of onsets adds stability (multiple paths) compared to chain.
- Add noise to simulations
 - Noise source: $\xi_i(t) = \text{Gaussian, zero mean, unit variance}$
 - st.dev. of noise (“strength”), β, varied across conditions
- Result: Greater steady-state relative phase stability (lower standard deviation, σ_{ss}) for clusters in onsets than codas

![Graph showing standard deviation of C-C phase (radians) vs. standard of noise for onsets and codas.]

<table>
<thead>
<tr>
<th>std. of noise</th>
<th>Onsets</th>
<th>Codas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>0.25</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>0.45</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>0.65</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>0.85</td>
<td>0.65</td>
<td>0.85</td>
</tr>
</tbody>
</table>