Automated Speech Recognition Technology for Dialogue Interaction with Non-Native Interlocutors

Alexei V. Ivanov†, Vikram Ramanarayanan†, David Suendermann-Oeft†,
Melissa Lopez‡, Keelan Evanini‡ and Jidong Tao‡

Educational Testing Service R&D
† 90 New Montgomery St, # 1500, San Francisco, CA
‡ 600 Rosedale Road, Princeton, NJ
{aivanou,vramanarayanan,suendermann-oeft,mlopez002,kevanini,jtao}@ets.org

Abstract

Dialogue interaction is a difficult application area for speech recognition technology because of the limited acoustic context, the narrow-band signal, high variability of spontaneous speech and timing constraints. It is even more difficult in the case of interacting with non-native speakers because of the broader allophonic variation, less canonical prosodic patterns, higher rate of false starts and incomplete words, unusual word choice and lesser probability to have a grammatically well-formed sentence. We present a comparative study of various approaches to speech recognition in non-native dialogic context. Comparing accuracy and real-time factor we find that a Kaldi-based Deep Neural Network Acoustic Model (DNN-AM) system with online speaker adaptation by far outperforms other available methods.

1 Introduction

Designing automatic speech recognition (ASR) and spoken language understanding (SLU) modules for spoken dialog systems (SDSs) pose more intricate challenges than standalone ASR systems, for many reasons. First, speech recognition latency is extremely important in a spoken dialog system for smooth operation and a good caller experience, one needs to ensure that recognition hypotheses are obtained in near real-time. Second, one needs to deal with the lack of (or minimal) context, since responses in dialogic situations can often be short and succinct. This also means that one might have to deal with minimal data for model adaptation. Third, these responses being typically spontaneous in nature, often exhibit pauses, hesitations and other disfluencies. Fourth, dialogic applications might have to deal with audio bandwidth limitations that will also have important implications for the recognizer design. For instance, in telephonic speech, the bandwidth (8 kHz) is much less as compared to hi-fidelity audio recorded at 44.1 kHz. All these issues can drive up the word error rate (WER) of the ASR component. In a recent study comparing several popular ASRs such as Kaldi (Povey et al., 2011), Pocketsphinx (Huggins-Daines et al., 2006) and cloud-based APIs from Apple1, Google2 and AT&T3 in terms of their suitability for use in SDSs, (Morbini et al., 2013) found no particular consensus on the best ASR, but observed that the open-source Kaldi ASR performed competently in comparison with the other closed-source industry-based APIs. Moreover, in a recent study, (Gaida et al., 2014) found that Kaldi significantly outperformed other open-source recognizers on recognition tasks on German Verbmobil and English Wall Street Journal corpora. The Kaldi online ASR was also shown to outperform the Google ASR API when integrated into the Czech-based ALEX spoken dialog framework (Plátek and Jurčiček, 2014).

The aforementioned issues with automatic speech recognition in SDSs are only exacerbated in the case of non-native speakers. Not only do non-native speakers pause, hesitate and make false starts more often than native speakers of a language, but their speech is also characterized by a broader allophonic variation, a less canonical prosodic pattern, higher rate of incomplete words, unusual word choices and a lower probability of producing grammatically well-formed sentences. An important application scenario for non-native dialogic speech recognition is the case of conversation-based Computer-Assisted Language

1Apple’s Dictation is an OS level feature in both MacOSX and iOS.
2https://www.google.com/speech-api/v1/recognize
3https://service.research.att.com/smm
Learning (CALL) systems. For instance, Subarashii is an interactive dialog system for learning Japanese (Bernstein et al., 1999; Ehsani et al., 2000), where the ASR component of the system was built using the HTK speech recognizer (Young et al., 1993) with both native and non-native acoustic models. In general, the performance of the system after SLU was good for in-domain utterances, but not for out-of-domain utterances. As another example, in Robot Assisted Language Learning (Dong-Hoon and Chung, 2004) and CALL applications for Korean-speaking learners of English (Lee et al., 2010), whose authors showed that acoustic models trained on the Wall Street Journal corpus with an additional 17 hours of Korean children’s transcribed English speech for adaptation produced as low as 22.8% WER across multiple domains tested. In the present work, we investigate the online and offline performance of a Kaldi Large Vocabulary Continuous Speech Recognition (LVCSR) system in conjunction with the open-source and distributed HALEF spoken dialog system (Mehrez et al., 2013; Suendermann-Oeft et al., 2015).

The rest of the paper is structured as follows: Section 2 describes the details of the system architecture followed by details of the experimental setup in Section 3 before providing an outline of the future directions and conclusions in Section 4.

2 System description

Figure 1 schematically depicts the main components of the HALEF spoken dialog framework, of which the speech recognizer is a component. The various modules of HALEF include the Asterisk telephony server (van Meggelen et al., 2009), a voice browser based on JVoiceXML (Schnelle-Walka et al., 2013), a web server running Apache Tomcat, and a speech server, which consists of an MRCP server (Prylipko et al., 2011) in addition to text-to-speech (TTS) engines—Festival (Taylor et al., 1998) and Mary (Schröder and Trouvain, 2003)—as well as support for Sphinx-4 (Lamere et al., 2003) and Kaldi (Povey et al., 2011) ASRs. In contrast to Sphinx-4 which is tightly integrated into the speech server code base, Kaldi-based ASR is installed on an own server, which is communicating with the speech server via TCP socket. Advantages of this design decision are (a) the ease of management of the computational resources, required by Kaldi when operating in real-time mode (including the potential use of GPUs), which could otherwise interfere with the other processes running on the speech server (audio streaming, TTS, SIP and MRCP communication) and (b) the ease to test the very speech recognizer used in the live
SDS also in the offline mode, for example for batch experiments. Often ASR configurations in live SDSs differ from batch systems which may result in different behaviour w.r.t. WER, latency, etc.

In this paper, we will be focusing specifically on using and evaluating the performance of the Kaldi ASR system within HALEF (we have already covered the Sphinx version in the papers cited above). We generally follow Kaldi’s WSJ standard model generation recipe with a few modifications to accommodate our training data. The most sophisticated acoustic models are obtained with speaker adaptive training (SAT) on the feature Maximum Likelihood Linear Regression (fMLLR)-adapted data.

We use about 780 hours of non-native English speech to train the acoustic model and transcripts of that speech to produce a tri-gram statistical language model. The speaker population is diverse covers diversity of native languages, geographical locations and age groups. In order to match the audio quality standard of Public Switched Telephone Network (PSTN), we reduce the sampling rate of our recordings down to 8kHz.

The default Kaldi speech recognizer use case is oriented towards optimal performance in transcription of large amounts of pre-recorded speech. In these circumstances there exists a possibility to perform several recognition paths and estimate the adaptation transformation from a substantial body of spoken material. The highest performing Deep Neural Network (DNN) acoustic model (“nnet2” in Kaldi notation) requires a prior processing path with the highest performing Gaussian Mixture Model (GMM, “tri4b” in Kaldi notation), which in turn requires a prior processing path with the same GMM in the speaker-independent mode.

However, in the dialogue environment, it is essential to be able to produce recognition results with the smallest possible latency and little adaptation material. That is the main reason for us to look for alternatives to the mentioned approach. One such possibility is to use the DNN acoustic model with un-adapted data and constrain its output via a speaker-dependent i-Vector (Dehak et al., 2010). This i-Vector contains information on centroids of the speaker-dependent GMM. The i-Vector can be continuously re-estimated based on the acoustic evidence available up to the moment (“online” mode) or after presentation of the entire spoken content (the so called “offline” mode).

3 Experiments

The evaluation was performed using spontaneous vocal productions obtained from language learners in the scope of large-scale internet-based language assessment. Duration of the production is a major distinction of this data from the data one may expect to find in the spoken dialogue domain. Every interaction consists of up to six utterances. Each of them lasts up to 60 seconds. The test and development sets have 100 complete interactions each. Comparative results are presented in Table 1.

We also validate performance estimates of the proposed “DNN i-Vector” system with the recordings obtained from our HALEF-based spoken dialogue system. These figures also follow the same general trend as illustrated in Table 1 although at a higher average WER. The main reason for that is a mismatch of the language model and especially the vocabulary we used in the dialogue application.

As it can be learned from the table 1, the “DNN i-Vector” method of speech recognition outperforms Kaldi’s default “DNN fMLLR” setup. This can be explained by the higher variability of non-native speech. In this case the reduced complexity of the i-Vector speaker adaptation matches better the task that we attempt to solve. There is only a very minor degradation of the accuracy with the reduction of the i-Vector support data from the whole interaction to a single utterance. As expected, the “online” scenario loses some accuracy to the “offline” in the utterance beginning, as we could verify by analyzing multiple recognition results.

It is also important to notice that accuracy of the “DNN i-Vector” system compares favorably with human performance in the same task. In fact, experts have average WER around 15% (Zechner, 2009) while turkers perform significantly worse around 30% WER (Evanini et al., 2010). Our proposed system has reached the level of broadly defined average human accuracy in task of non-native speech transcription.

The “DNN i-Vector” ASR method vastly outperforms the baseline in terms of processing speed. Even with the large vocabulary model in a typical 10-second spoken turn we expect to have only 3 seconds of ASR-specific processing latency. Indeed, in order to obtain an expected de-
<table>
<thead>
<tr>
<th>System</th>
<th>Adaptation</th>
<th>WER (dev)</th>
<th>WER (test)</th>
<th>xRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM SI</td>
<td>Offline, whole interaction</td>
<td>37.58%</td>
<td>37.98%</td>
<td>0.46</td>
</tr>
<tr>
<td>GMM fMLLR</td>
<td>Offline, whole interaction</td>
<td>29.96%</td>
<td>31.73%</td>
<td>2.10</td>
</tr>
<tr>
<td>DNN fMLLR</td>
<td>Offline, whole interaction</td>
<td>22.58%</td>
<td>24.44%</td>
<td>3.44</td>
</tr>
<tr>
<td>DNN i-Vector</td>
<td>Online, whole interaction</td>
<td>21.87%</td>
<td>23.33%</td>
<td>1.11</td>
</tr>
<tr>
<td>DNN i-Vector</td>
<td>Offline, every utterance</td>
<td>21.81%</td>
<td>23.29%</td>
<td>1.05</td>
</tr>
<tr>
<td>DNN i-Vector</td>
<td>Online, every utterance</td>
<td>22.01%</td>
<td>23.48%</td>
<td>1.30</td>
</tr>
<tr>
<td>DNN i-Vector</td>
<td>Offline, every utterance</td>
<td>21.90%</td>
<td>23.22%</td>
<td>1.13</td>
</tr>
</tbody>
</table>

| Table 1: Accuracy and speed of the explored ASR configurations; WER – Word Error Rate; (dev) - as measured on the development set; (test) – as measured on the test set; xRT - Real Time factor, i.e. the ratio between processing time and audio duration; SI - Speaker Independent mode. |

lay one shall subtract the duration of an utterance from the total processing time as the “online” recognizer commences speech processing at the moment that speech is started. That 3 seconds delay is very close to the natural inter-turn pause of 0.5 – 1.5 seconds. Better language modeling is expected to bring the xRT factor below one. The difference of the xRT factor between the “online” and “offline” modes can be explained with somewhat lower quality of acoustic normalization in the “online” case. Larger number of hypotheses fit within the decoder’s search beam and, thus, increase the processing time.

4 Conclusions

The DNN i-Vector speech recognition method has proven to be advantageous in the task of supporting a dialogue interaction with non-native speakers. We observe improvements both in accuracy and processing speed. The “online” mode of operation appears particularly attractive as it allows to minimize processing latency at the cost of a minor performance degradation.

There are ways to improve our system by performing a more targeted language modeling and, possibly, language model adaptation to a specific dialogue turn. Our further efforts will be directed to reducing processing latency and increasing in the system’s robustness by incorporating interpretation feedback into the decoding process.

We plan to perform a comparative error analysis to have a better picture of how our automated system compares to the average human performance. It is important to separately evaluate WERs for the content vs functional word subgroups; determine the balance between insertions deletions and substitutions in the optimal operating point; compare humans and machines in ability to recover back from the context of the mis-recognized word (e.g. a filler or false start).

We plan to collect actual spoken dialogue interactions to further refine our system through a crowdsourcing experiment in a language assessment task. Specifically, the ASR sub-system can benefit from sampling the elicited responses, measuring their apparent semantic uncertainty and tailoring system’s lexicon and language model to better handle acoustic uncertainty of non-native speech.

References

