Coordination of speech gestures and syllable structure

Syllabification

- As Ladefoged notes, English speakers (and speakers of other languages) generally agree about the number of syllables in a word. Some problematic cases:
- (a) "prism, mysticism"
 (b) "peel, seal, pail,"
 (c) "fear, fire, hour"
 "hire" vs. "higher"
 (d) "mediate, heavier, neolithic"
- How can syllables be defined phonetically?
 - Sonority Peaks
 - Jaw cycles
 - Gestural Coordination

Sonority Peaks

- The number of syllables corresponds to the number of distinct amplitude peaks in the acoustic signal. Why?
- Each peak corresponds to the nucleus of a syllable.
- Sonority principle can account for relatively clear cases.
- It could also explain the disagreements in (1). The "extra" syllable corresponds to a local peak of amplitude that is greater what precedes it, but is not as high as a typical nucleus. E.g,

Problems for Sonority

Jaw Cycles

- Frame-Content Theory (McNeilage & Davis)
 - Speech develops in the infant initially through the oscillation of the jaw.
 - Each cycle of the jaw oscillation corresponds to a syllable and is called by M&D 'the frame.'
 - The individual consonants and vowels are "the content" and develop later.
 - For adults, the nucleus corresponds to the downward phase of the jaw cycle, the onset and coda correspond to the upward phase.
- In careful speech, jaw behavior differentiates "support" from "sport."
- However, for faster, more casual speech, the "extra" jaw deflection for "support" is absent.

Organization of speech into syllables: How are gestures coordinated in time?

time

- Relative timing of gestures carries information.
- How is appropriate relative timing maintained?
 - Timing needs to be systematic to preserve information and flexible to vary with rate and prosody and speaker
- Dynamical systems have these properties
 - The dynamical systems corresponding individual gestures are fixed during their activation intervals and context-independent, but the resulting movements vary flexibly as a function of context.
 - What kind of dynamical system causes the gestures to be activated and deactivated in time?

Dynamics of planning intergestural timing:

- Each gesture is associated with a planning oscillator, or clock, responsible for triggering that gesture's activation.
- A clock is a dynamical system: a different kind than the simple point attractor that controls individual gestures; it is a periodic attractor.
- Relative phase of clocks (and therefore time of triggering) is controlled by coupling the clocks to one another.
- Coupling means that the dynamical equation of one clock includes not only its current state, but the state of the clock it is coupled to.

Why clocks and coupling?

 Clocks are oscillatory dynamical systems. They exhibit entrainment: They spontaneously synchronize with one another

Huygens' clocks

http://www.youtube.com/watch?v=WITMZASCR-I

Demo: Bahraminasab

Generality of Entrainment

• Applies to living systems, including humans.

http://www.youtube.com/watch?v=4FNoIDgNE60

Entrainment of clocks within an individual or across individuals

Turvey, 1990

• Coupling doesn't have to be mechanical. It can be informational (Saltzman, 1995).

Speech entrainment across talkers

- Articulator kinematics from two talkers simultaneously.
 - Talkers (I M, IF) sat 2 m apart facing one another
 - M:"cop top cop top..." F ;"top cop top cop..."

Tiede, Kroos, Bundgaard-Nielsen, Gilbert, Attina, Kasiopa, Vatikiotis-Bateson, Best (2010)

BEFORE Entrainment

AFTER Entrainment

Modes of coupling

- Systems of coupled oscillators exhibit discrete modes of synchronization:
 - frequency-locking
 - phase-locking
- These modes have been shown to underlie the coordination of movements of multiple limbs in human action. (e.g., Turvey, 1990; Kelso, 1995).
- The same modes can be used to coordinate speech actions and form an account of syllable structure and account for generalizations about syllable structure.

Syllable Structure: Combinations of segments and their gestures

- Two types of units:
 - Consonant (C)
 - Vowel (V)
- Cs and Vs form syllables.
- Combinatorial generalizations:
 - Universality: CV syllables only universal type
 - Freedom: Onsets and Rime combine relatively freely in languages. Combinations within Onset and within Rime can be more constrained.
 - Acquisition: CV combinations acquired by child earlier than VC
 - Weight:

Onsets rarely contribute to weight. Codas frequently do

Synchronization modes for limb coordination: phase-locking

- Two relative phase modes (or attractors) are spontaneously available (require no learning) Haken, Kelso & Bunz, 1985
 - 0° (in phase) most stable, accessible
 - 180° (anti-phase)
- Oscillation frequency (rate) is a control parameter:
 - Spontaneous transitions to most stable mode (0°) as frequency increases.
 - Fluctuations in phase during transition interval.

Turvey, 1990

Modes & Syllable Structure

- If a basic consonant constriction (C) gesture and a vowel (V) constriction gesture are to be coordinated in a spontaneously available mode, there are just two possibilities:
 - in-phase
 - hypothesized for C-V (onset) simplest, most stable, accessible
 - anti-phase
 - hypothesized for V-C (coda)

Onset C and V gestures begin synchronously (Löfqvist & Gracco, 1999); Hypothesize that clocks are in-phase.

Coda C begins later than V; hypothesize that clocks are anti-phase.

Universality of CV structure

- All languages have CV syllables, but not all languages have VC structures (e.g. Clements, 1990).
- This can be accounted for by the the fact that in-phase is the more accessible, more stable mode.

Combinatorial Freedom

- Combination is free where the coupling mode is maximally accessible without learning (inphase).
- Combinations are most restricted where learning is required.

CV: onset-rime	in-phase	no learning		
VC: nucleus-coda	anti-phase	no learning, but less accessible		
CC: within onset,coda	other	particular combinations must be learned	1	

ccessibili

Freedom

Acquisition of syllable structure (Nam, Goldstein & Saltzman, 2009)

- Infants develop onsets (CV) before codas (VC) in all languages. (e.g.Vihman & Ferguson, 1987; Fikkert, 1994)
- Lag in acquisition of codas is shorter in languages that make more frequent use of VC (Roark & Demuth 2000).
- These facts are predicted by a model of a learning agent that includes both:
 - Greater accessiblity in-phase mode
 - Attunement to C<->V phase in the ambient language

Planning model (Goldstein, Byrd, Saltzman, 2006)

- Phonological input to planning is a coupling graph:
 - NODES: Specification of gestures and the associated planning oscillators
 - EDGES: coupling functions between pairs of planning oscillators.

- At the beginning of planning process, oscillators are set into motion at random phases.
- Coupling forces specific to graph cause the oscillators to settle at stabilized relative phases (Saltzman & Byrd, 2000).
- Once stabilized, timing oscillators trigger the activation of their associated gesture(s).

Timing and Ig-specific syllabification: CC clusters in onset

- If onset is defined by an in-phase relation between C gesture and V, then all onset C gestures should be synchronous with V (and therefore with each other).
- Multiple constriction gestures in onset cluster (e.g., "spats").
 - Gestures must be at least partially sequential to afford perceptual recoverability.
 - Some languages, (e,g., French) contrast /sp/ and /ps/
 - What in the coupling graph identifies them as both in the onset??

Competitive coupling hypothesis

(Browman & Goldstein, 2000)

- Specifications in the coupling graph can compete with one another
- C-V coupling
 - All C gestures in onset coupled in-phase with the V.
- C-C coupling
 - C gestures also coupled sequentially (eccentric)
- These cannot both be realized, so coupling is competitive

Consequences of competitive coupling

results of competition C_1 Splits in the But of page in a split of the split of

- Prediction: Observed coordination should reveal the presence of both couplings. As Cs are added to an onset:
- Rightmost C (C_n) should shift later with respect to the vowel.
- Leftmost C (C₁) should shift earlier with respect to vowel.

Evidence for Rightward shift of C_n

L

Rightward shift of C_n as diagnostic for complex onset?

- If a consonant sequence is syllabified as part of an onset, then it should exhibit rightward shift.
- Georgian and Tashlhiyt Berber are languages in which words can begin with sequences of 3 obstruents.
- But they differ as in syllabification of such words:
 - Georgian Cs are complex onsets
 - Berber only allows a single C in onset, other Cs constitute nuclei of additional syllables.
- Georgian exhibits rightward shift, but Berber does not.

Georgian: Rightward shift EMA data

(Goldstein, Chitoran, Selkirk, 2007)

Lag: Target (V) - Target (C_n)

/k'riala/ /ts'k'riæla/

riala/

Tashlhiyht Berber: Rightward shift EMA data

Evidence for complex onsets

- Differences between Georgian and Berber provide tentative support that c-center can be used as diagnostic for complex onset structures.
- Support from other languages:
 - Italian: /sC/ vs. /Cl/ (Hermes, 2013)
 - Moroccan Arabic (Shaw et al. 2010)
 - Romanian (Marin 2012)
 - Chinese (tones & consonants) (Gao, 2008)

Relation of ambiguous syllabification to gestural coordination (Tilsen & Cohn, 2016)

 Participants produced words like "peel, fire" and then gave syllable count judgements (using slider, they could choose value >1 but <2.

Syllable judgments

Relation of Production to Syllable Count

F2 peak timing	Δ%	t (df) =	<i>p</i> -value =
/ail/	6%	2.2 (267)	0.030
/air/	14%	2.7 (165)	0.008
F2 rise			
/ail/	6%	9.9 (257)	0.002
/air/	9%	1.1 (160)	0.005

Formant differences: Hypothesized gestural timing

Dorsal gesture of /l/ overlaps vowel when it is in coda

Coupling graphs are presumably different

Velarization of /l/

- English /l/ is described as "dark" or "velarized" in coda, and "brighter" not velarized in onset.
- The gestures in the two positions are in fact very similar, but the timing is different.
- In coda, the retraction of the TB occurs first and contributes to the "velarized" percept.
- Pattern in very similar to that for nasals.

<u>Principle 2:</u> Coordination in onset vs coda in English Onset: all gestures composing a C begin synchronously Coda: gestures composing a C can be sequential, with wider constriction leading

Non-vocalic nuclei?

C and V gesture valences

• C and V gestures are differentiated by

- degree of constriction (V is wider)
- dynamic stiffness (V takes longer to get to target)
- activation interval (V still active after C released)
- Nature of these differences is such that C and V gestures can be triggered synchronously and still be both be recoverable by listeners (Mattingly, 1981).
- These gestural properties, together with the stability of in-phase coupling gives rise to valence of C and V gestures -- they combine freely with each other in C-V structures.

What gestures can serve as syllable nuclei?

Voiceless vowel-less syllables:

phonetic and phonological evidence from Tashlhiyt Berber

Rachid Ridouane *LPP - UMR 7018, CNRS – Sorbonne Nouvelle Paris III 19, rue des Bernardins 75005 Paris*

Is there a language in which any segment can be syllabic?

One such language is <u>Tashlhiyt Berber</u> (TB) (Dell & Elmedlaoui 1985, Prince & Smolensky 1993, Zec 1995, Clements 1997).

Examples
 Voiced fricative : /tsbGt/ [ts.bGt] « you paint »
 Voiceless fricative : /t-sti/ [ts.ti] « she chose »
 Voiced stop : /t-g°ra/ [tg°.ra] « she took »
 Voiceless stop : /tkmi/ [tk.mi] « she

Figure 1. Audio signal and spectro of one repetition of [sfqqst] by R_R

Figure 2. Audio signal and spectro of one repetition of [tfsxt] by A_R

Schwa Unstable

within one same subject and one same form.

• This same subject may realize long voiceless sequences with no vowel at all. This is the case for instance for the items *fqqs, tfktstt* and *tftXtstt*.

Acoustic waveform and spectrogram of one repetition of $[tftXtstt] \ll fadeaway \gg by E_M$.

Evidence for syllabication: Versification

- TB versification distinguishes between heavy and light syllables (Jouad 1983).
- In TB poetry it is common for all the lines of a piece to be sung to the same tune.
- If a tune is comprised of *n* successive notes, a text with more than *n* syllables cannot be sung to it.

(See Dell & Elmedlaoui 2002 and the references therein)

Sequences sung to a tune

I present below the parsing of three lines of Immi nna "my dear mother" sung by Iznzarn (1970)

1	2	3	4	5	6	7	8	9	10	11	12	13
L	L	L	L	L	Η	Η	L	L	L	L	L	L
im	mi	n	na	(kf)	rab	biG	ta	sa	wa	la	wu	li
(tz*)	da	tz	dm	ta	g°md	Glh	ma	wa	la	sm	mi	di
ad	da	ln	sa	sm	mid	wat	sm	ms	tr	fl	la	Gi

* This syllable and the following three are emphatic

In-phase C-C syllables in Berber?

- Any segment may appear appear as nucleus in Tashlhiyt Berber (Dell & Elmedlaoui, 1985).
 - [tu.da] 'suffice' [tb.da] 'begin'
- Expected graphs?

CC vs. CV syllables

CC syllables

- C gestures are not in-phase
- If they were, they might not be able contrast in order
- Alternative graphs: Note abstract syllable oscillator

CC in onset vs. coda: possible coupling graph differences and weight

 Hypothesis: No competitive coupling in coda (for English)

Coda

- Why?
 - Perhaps the weaker anti-phase coupling doesn't attract the (more remote) as strongly as does the inphase coupling of onsets.

Onset $C \rightarrow C$ $C \rightarrow C$ $\downarrow /$ $\downarrow /$ $\downarrow /$

Onset-Coda asymmetry in weight (Nam, 2007)

- Onset Cs typically do not contribute to syllable weight.
- Coda Cs may or may not depending on the language
- If weight is related to (syllable) duration, then proposed coupling structures can account for the difference between onset and coda consonants in weight.
- With synchronous onset coupling, effect of rightward shift is that adding a C to onset does not increase syllable duration by the duration of the C (more like one-half the C duration).

Onset
$$\bigvee_{V} \bigvee_{V} \bigvee_{V$$

Languages in which coda Cs do not bear weight are predicted to show competitive coda coupling (e.g., Malayalam, Broselow et al. (1997) 49

C-Center in coda?

(Marin & Pouplier, 2010)

• Predictions of coupling asymmetry model:

Timing stability in onsets vs. codas

Timing between C gestures is more stable in onset clusters than in coda clusters (Byrd, 1996).

/sk/

Onset Coda $C_1 \rightarrow C_2 \rightarrow V \rightarrow C_3 \rightarrow C_4$

- Hypothesis: Loop topology of onsets adds stability (multiple paths) compared to chain.
- Add noise to simulations
 - Noise source: $\xi_i(t) = Gaussian$, zero mean, unit variance
 - st.dev. of noise ("strength"), β, varied across conditions
- Result: Greater steady-state relative phase stability (lower standard deviation, σ_{ss}) for clusters in onsets than codas .

