Vowels

Two approaches to vowels

Continuous 2D Space

Discrete Constriction Locations

- Acoustics
- Auditory properties

- Articulation
- Contrast

Discrete system

- Historically older, traditional view (at least as old as early Indian grammarians, 7th century).
- Vowels come in three distinct types:
 - palatal ("mouth vowels")
 - labio-velar ("lip vowels")
 - pharyngeal ("throat vowels")
- Each type is categorically distinct.
- Within each type, jaw height may be used to distinguish vowels

Origin of continuous space theory

- A.M. Bell
- developed a system for teaching speech to deaf children
- Bell was haunted by inability to categorize the vowel in "Sir" within the tongue constriction theories.
- Bell invented central ("mixed") vowels (around 1867), and characterized vowels as points in a 2-dimensional space (e.g., high vs. low, front vs. back).
- "Mixed" vowels were both front and back. corresponding to his descriptive system

Cardinal Vowels of Daniel Jones (1917)

Arbitrary Reference points in a 2D vowel space

- Auditory qualities learned by rote
- Definitions:
 - highest front possible = (1)
 - lowest back possible = (5)
 - others "auditorily equidistant"
 - (I) has maximal lip spreading
 - (8) has maximal lip rounding
 - gradual increase in rounding from (I) to (8).
- System could be used reliably by people trained

14/15 judgements of phoneticians listening to Gaelic vowels

Dimensions of Cardinal Vowel Space?

Phoneticians
Imagine:
position of
highest point
of tongue

But the truth is a bit different Cardinal Vowel X-rays of Stephen Jones (1929)

Peter Ladefoged: Formant Frequencies

- Sir Isaac Newton recognized the relation between vowel qualities and resonances.
- He noted that he could hear a progression of different vowels as he poured beer into a flaggon.
- Ladefoged: Very close relation spatial agreement between auditory judgments of trained phoneticians and plot of F2-F1 vs F2

English Vowels

Auditory Judgements

Naive Listener Judgements

Capturing Language Differences

"But wait..."

- Formants are influenced by overall head size of the speaker.
- How can they represent the phonetic qualities of a language??

Individual differences in Cardinal Vowels

- Vowels spoken by trained phoneticians
- Different and different vowels overlap!

Formants values of American English speakers

Normalization

- How do we hear the same vowels produced by different speakers as "the same"?
 - Relative normalization compared to other vowels produced by that speaker
 - Higher formant normalization
 Values of F5 and higher are determined by vocal tract length alone
 No effect of constrictions
 - Dynamic Normalization
 Changes in formant frequencies from consonants to vowels give information about constrictions

Other problems with formants: rounding

- Vowels that differ only in lips: [i] vs. [y]
- "Opposite" lip positions in Secondary Chart
 - e.g., (1) and (9) have same tongue, but opposite lips
 - but they have different values of F1, F2 (rounding always lowers formants, so position in the formant space is not independent of rounding.

Formants of Daniel Jones' CVs

Formant space of secondary vowels is shrunken compared to primary

Phoneticians' judgments of Gaelic vowels

 When phoneticians listen to a audio recording of a vowel in an unknown language that is not found on the primary cardinal vowel "slice", they may not be able to tell whether the the vowel is a front rounded or a back unrounded vowel--they cannot separate position in the space from rounding.

Lindblom's dispersion theory`

- Languages choose vowel qualities to maximize the size of the acoustic space,
 - Front unrounded, back rounded

Problem with continuous space: vowel height

- If vowel height is the relevant parameter on which vowel gestures contrast, how can different speakers order the same two vowels differently along this parameter?
- The speakers are mutually intelligible; they do not confuse the vowels.

Discrete Constriction Approach

- Wood (1984)
 measured area
 functions from a
 variety of languages
 show constrictions
 limited to these four
 locations.
- Velar and Uvular usually accompanied by lip constrictions.

How do distinct constrictions produce distinct formant patterns?

- palatal (e.g./i/)
 - FI down, F2 up
- Pharyngeal (e.g. /a/)
 - FI up, F2 down
- Velar (e.g./u/)
 - FI down, F2 down

Modes of air vibration in tube with one open end

Another view of modes: strings

Constriction is like adding mass

- Adding mass where air (or string) is moving a lot frequency of mode goes down.
- Adding mass where air (or string) is NOT moving a lot frequency of mode goes up.

Adding mass where string is moving...

Palatal Constrictions

Pharyngeal Constrictions

Velar/Uvular + Labial constrictions

Formant variation within constrictions

- Jaw height
 - High vs. Low
- Tense vs. Lax shape
 - bunching of tongue root forward to raise front of tongue
- Rounding

Palatal Vowels

	tense tongue shape	lax tongue shape
Jaw hi	i	I
Jaw lo	e	3

Position of tongue with respect to palate, and therefore FI will be similar for [e] and [l].

German Palatal Vowels

English Palatal Vowels

Tense

Lax

- Jaw height
 - lowering jaw, decreases CD and raises FI
- Tense vs. Lax shape
- lax tongue root decreases CD and raises FI
- So [I] and [eI] have similar FI but different shapes.

Low Jaw

hayed

English Palatal Vowels

Distinct Muscles for 4 vowel types

Tongue as complex structure

Hydrostat

- like a bag of jelly (e.g. trunk of elephant; octopus arm)
- no bones or joints
- Muscles shape bag and position it with respect to fixed surfaces.

Two types of muscles

- intrinsic (shaping) muscles arise and insert within tongue itself
- extrinsic (positioning)
 muscles attach at one end to tongue, at one end to external
 bones or cartilages.

Longitudinalis superior muscle

Median septum

Intrinsic muscles

- Intrinsic muscles (primary for consonants)
 - longitudinals (primary for coronal consonants)
 - transversus (involved in narrowing tongue during laterals)

Extrinsic Muscles (primarily vowels)

