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Abstract—This paper presents novel variations of group sparse
regularization techniques. We expand upon the Sparse Group
LASSO formulation to incorporate different learning techniques
for better sparsity enforcement within a group and demonstrate
the effectiveness of the algorithms for spectral denoising with
applications to robust Automatic Speech Recognition (ASR). In
particular, we show that with a strategic selection of groupings
greater robustness to noisy speech recognition can be achieved
when compared to state-of-the-art techniques like the Fast Itera-
tive Shrinkage Thresholding Algorithm (FISTA) implementation
of the Sparse Group LASSO. Moreover, we demonstrate that
group sparse regularization techniques can offer significant gains
over efficient techniques like the Elastic Net. We also show that the
proposed algorithms are effective in exploiting collinear dictio-
naries to deal with the inherent highly coherent nature of speech
spectral segments. Experiments on the Aurora 2.0 continuous digit
database and the Aurora 3.0 realistic noisy database demonstrate
the performance improvement with the proposed methods, in-
cluding showing that their execution time is comparable to FISTA,
making our algorithms practical for application to a wide range
of regularization problems.

Index Terms—Automatic speech recognition (ASR), denoising,
group sparse regularization, sparse representation.

I. INTRODUCTION

R EGULARIZATION techniques are commonly employed
in statistics, natural sciences, and engineering. In this

paper, we are interested in the specific application of regu-
larization techniques to spectral denoising with the aim of
improving automatic speech recognition [1] (ASR). We begin
with a brief survey of relevant efforts in this direction in the
field of missing data techniques (MDT) in speech. Recently,
Gemmeke et al. [2] and Börgstrom et al. [3] have proposed
the use of optimization techniques for spectral denoising in
speech recognition. Gemmeke et al. have coined the process
“Sparse Imputation” and demonstrated its efficiency over
classical missing data techniques. Here, imputation refers to

Manuscript received May 06, 2011; revised September 13, 2011 and
November 17, 2011; accepted November 25, 2011. Date of publication De-
cember 07, 2011; date of current version February 24, 2012. This work was
supported by grants from the National Science Foundation, Office of Naval
Research, and Army. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Engin Erzin.

The authors are with the Signal Analysis and Interpretation Laboratory
(SAIL), Department of Electrical Engineering, University of Southern Cali-
fornia Los Angeles, CA 90089 USA (e-mail: qtan@usc.edu; shri@sipi.usc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2011.2178596

the filling in/substitution/completion of missing data. However,
it is well known that techniques do not generally fair well
unless certain properties of the dictionaries are satisfied, and
an analysis of these properties is reported in [4]. In particular,
we [4] proposed the use of the Elastic Net for better exploiting
the characteristics of a coherent dictionary and also provided
a rigorous justification of why sparsity is necessary for the
improvement of speech recognition rate. We demonstrated sig-
nificant improvement over LASSO-based strategies for spectral
denoising. A block diagram representation of the process is
given in Fig. 1.

In most regularization applications, a linear model is as-
sumed:

(1)

Here, is the observed feature vector, is a basis/dictionary,
and is the activation. Frequently, the goal is to find a sparse
or maximally sparse which best reconstructs . By sparse sig-
nals, we mean signals that are zero everywhere except on a min-
imal support of the solution space [5]. Ideally, we would like to
solve the following optimization problem which optimizes the

norm (the norm is defined as )

(2)

For a maximally sparse solution vector, we ideally would like
to solve the following:

(3)

However, it is well known that this problem is NP-hard, since

solving (3) will involve searching through least-square

problems, where denotes the dimensions of the activation
, assuming that is -sparse (having nonzero activations).

However, there are some good greedy-based solutions which
seek to approximate the solution to (3), with examples in-
cluding matching pursuit (MP) [6] and orthogonal matching
pursuit (OMP) [7].

It is typical that we consider a convex relaxation of the above
problem to optimize the norm instead:

(4)

There exist many efficient solutions for solving (4); examples
include the Least Absolute Shrinkage and Selection Operator
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Fig. 1. Block diagram illustrating a typical speech recognition system but enhanced with our new front-end. The “Spectral Denoiser” module is an extra module
which we introduced into the feature extraction flow that utilizes the group sparse regularization techniques with appropriate dictionary partitioning for better
recognition accuracies.

(LASSO) [8] and the Least Angle Regression (LARS) algorithm
[9].

In this paper, we are more interested in a particular extension
of the LASSO model to incorporate grouping information, given
by the following:

(5)

Here, stands for partitions of the dictionary and stands
for the corresponding activations. Yuan and Lin [10] proposed
an efficient solution for resolving (5). Meier et al. [11] have
proposed a variation which solves the problem efficiently for
logistic regression models. However, it has been pointed out
in [12] that the group LASSO does not yield sparsity within a
group. Thus, whenever a group has some nonzero parameters,
they will likely be all nonzero. Hence, the proposal is to con-
sider the following problem formulation instead:

(6)

This is known as the Sparse Group LASSO (SGL). It is a
more general formulation than the Group LASSO since, when

, we will have the Group LASSO. Experimental sim-
ulation in [12] has provided promising evidence of a more ro-
bust performance in the presence of collinear dictionaries over
the Group LASSO and the LASSO algorithms. While [12] has
proposed a one-dimensional optimization based on the Golden
Section Search algorithm to capitalize on the separable penalty
function, there are other efficient solutions to the formulation
in (6). Notably, the software SLEP [13] implements the SGL
formulation using a version of Fast Iterative Shrinkage-Thresh-
olding Algorithm (FISTA) [14].

The first contribution of this paper is to propose novel
variations along the lines of the SGL formulation to better
enforce sparsity within a group. Specifically, we propose two
algorithms, one which follows the theme of the Least Angle
Regression implementation of the Elastic Net [15] and the

other along the lines of Sparse Bayesian Learning (SBL) [16].
The SBL algorithm boasts a prior which is able to enforce
sparsity efficiently and in this paper we will experimentally
justify this for our spectral denoising task for improving speech
recognition.

The second contribution of this paper is the study of
the effects of grouping spectral atoms in the dictionary on
speech recognition rates. We discuss grouping techniques
for enhancing the spectral denoising process for a dictionary
consisting of a variety of spectral exemplars. In particular, we
explore groupings based on speaker identity and also based
on distance between the feature vectors. Through experi-
ments on the Aurora 2.0 noisy digits database and the Aurora
3.0 real noisy data, we demonstrate that clustering based on
either strategy will lead to an appreciable increase in speech
recognition rates. In fact, experimental evidence show that
these grouping strategies, coupled with an appropriate group
sparse regularization technique, yield better accuracies than the
Elastic Net algorithm.

The structure of the paper is as follows. Sections II and III de-
tails the derivation of our proposed algorithms, theoretical justi-
fication as to the suitability of these algorithms in the denoising
framework, and a description of the feature extraction process.
Sections IV and V describes our dataset, experimental results,
and interpretation of the results. Finally, Section VI concludes
with some possible consequences and extensions of our work in
this paper.

II. METHODOLOGY

A. Notation Description

Before delving into the main results of the paper, we first
introduce the notational conventions adopted in the paper.

For matrices, we use a bold uppercase font-for example,
denotes a matrix of features; in speech recognition the columns
typically would correspond to sequence of spectral frame infor-
mation (see Section IV). For vectors, we use a bold lowercase
font-for example refers to a vector of features. Otherwise, a
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normal font refers to a scalar value-for example, can refer to
a particular entry in our feature vector.

When we add a hat on top of a variable, unless stated other-
wise, we refer to a result returned from an optimization formu-
lation, for example, can refer to the solution returned from (4).

B. Basis Selection Techniques

1) Partitioning the Dictionary: In order to form our dictio-
nary , where is the number of
training samples in the dictionary, we stack spectral exemplars
as the columns of the dictionary.

In order to further capitalize on the structure of the dictionary,
we assume that we can partition the dictionary as

(7)

In (7), “ ” represents the partition boundaries, is a ma-
trix comprised of some columns from , and denotes the
number of partitions (clusters) we have. When , we
just have each partition consist of a column of the dictionary.
Later sections in this paper will describe efficient partitioning
schemes that will be crucial for improving speech recognition
rates.

In view of the dictionary partitioning, we can reformulate our
problem in (2) as the following:

(8)

refers to a penalty rescaling factor with respect to the di-
mensionality of .

2) Better Exploitation of a Collinear Dictionary: In most
speech data, we can expect the spectral profiles for the same
phonemes/words (in general, a sound unit) to be similar. Thus,
we can expect groups of contiguous entries in the dictionary
to be highly collinear. As a result of the collinear dictionary, a
method like LASSO will not select the relevant atoms efficiently
due to the fact that it does not discriminate between the collinear
entries well enough [4]. In particular, let us define the covariance
matrix to be

(9)

where is a positive definite matrix. Suppose we arrange the
columns of such that and
corresponding to the nonzero activations. We set

(10)

We say that the estimator is sign consistent if and only if

as rank (11)

Sign consistency is a necessary condition for the LASSO
estimate to match the true model. It has been demon-
strated in [17]. [18] that LASSO is sign consistent only if

(Strong Irrepresentable
Condition). However, this condition has a high possibility of
being violated when the columns of are highly collinear, a
pressing issue in contending with speech data.

The work in [4] has shown that the Elastic Net significantly
outperforms LASSO in terms of speech recognition accuracies
in the spectral denoising framework by being able to better
exploit the properties of a collinear dictionary. Hence, when
we are considering group sparse regularization techniques, this
will be motivation to consider algorithms along the lines of the
SGL algorithm [12] rather than the Group LASSO algorithm
[10]. Moreover, as the authors in [12] pointed out, the Group
LASSO algorithm does not yield sparsity within a group. In
particular, when a group of activations is dropped the entire
group is dropped, and when a group is nonzero they will all be
nonzero.

C. Formulation of the “Group Elastic Net” Algorithm

Following the background discussed in Section II-B2, we
now set out to formulate the “Group Elastic Net” and the “Group
Sparse Bayesian Learning” algorithms for our problem setup. In
particular, the first formulation extends the Elastic Net formula-
tion to a more general setting, while retaining the speed (com-
plexity) advantages of the Elastic Net, and the second formula-
tion further promotes sparsity enforcement within a partition.

Motivated by (7) and the Elastic Net, we can have a different
formulation of our optimization problem as follows:

(12)

and are rescaling factors for the norm and norm, re-
spectively. Due to the fact that our penalty function is separable,
we can take the usual route of considering each group as an in-
dividual optimization problem. Suppose at the current iteration
we are considering group . Define the following:

(13)

denotes the number of columns in group . Let us define the
residual .

We will then need to solve a successive series of optimization
problems of the following form:

(14)

Define to be a vector as follows:

(15)
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We can manipulate the objective function (denote it ) in (14)
as follows:

(16)

The solution to (16) gives the solution to the original opti-
mization problem stated in (14). Specifically, we can scale
to give and is equal to . More-
over, the formulation in (16) increases the rank of the dictionary
(and hence reduces the coherence), which will contribute to mit-
igating the issue of highly coherent dictionary atoms.

If we proceed to solve (16) by the LASSO algorithm, we will
have the Elastic Net formulation [15]. This can be further sped
up to be equivalent to the order of one ordinary least squares
(OLS) fit by employing a modified version of the LARS-LASSO
solution [9]. We will call this method the “Group Elastic Net”
algorithm (Group EN) and the gist of the algorithm is given in
Algorithm 1.

“Group Elastic Net” Algorithm

1) Initialize the algorithm with . Here, we are
intializing with the least squares solution and is the
Pseudo-Inverse.

2) For each group , we define the residual
. We proceed to the Elastic Net

algorithm to solve the following optimization problem:

(17)

3) Iterate over all the groups repeatedly until convergence is
reached.

D. Formulation of “Group Sparse Bayesian Learning”
Algorithm

Since our goal in the grouped regularization setting is to en-
force sparsity within a group as well as between the groups,
there are alternatives to LARS-LASSO for resolving the op-
timization of (16). In particular, here we advocate the use of
Sparse Bayesian Learning [16], [19] due to the fact that it makes
use of a data parametrized prior which can be effective for en-
forcing sparsity. By assuming a parametrized prior, a good mea-
sure of sparsity relative to both and optimization can be
obtained.

We assume a Gaussian likelihood model for the residual

(18)

where . The SBL also assumes a param-
etrized prior from the training data, which is given by

(19)

Here, are the hyperparameters which reg-
ulate the prior variance of each weight. The inverse of the hyper-
parameters are chosen to be distributed according to a gamma
distribution [16]:

(20)

and are the parameters of the Gamma distribution. We
will see later (in Property 1) that controls the degree of spar-
sity of the vector , and thus can be likened to the role of .
However, since is adapted at each iteration of the algorithm
described below, we do not have to concern ourselves with the
explicit form of .

By choosing the appropriate prior as in (19), the posterior
density of the activation weights will be distributed according
to a Gaussian, which is given by

(21)

with

(22)

and

(23)

To compute the cost function for SBL, note that to find
, we marginalize to get

(24)

Here, we have

(25)

denotes an indicator matrix of all zeros except at the lo-
cation, where the value is 1. To maximize , we will be
equivalently minimizing . Thus, our cost func-
tion is

(26)
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Minimizing the expression in (26) will give us an update
rule of the hyperparameters. Alternatively, we can treat the ac-
tivations as hidden variables [16], [19] and then maximize

to give an expectation–maximiza-
tion (EM) formulation for SBL.

However, it has been demonstrated by Tipping et al. in [20]
that this EM implementation of the SBL algorithm is generally
slower than if we considered the atoms in the dictionary sequen-
tially. In fact, experimental verification in [20] has demonstrated
that the Sequential Sparse Bayesian Learning (SSBL) performs
more than 15 times faster as compared to the EM implementa-
tion. In particular, for our case, this speedup will be even more
relevant for two reasons: first, our dictionary is augmented to be
even larger as given in (16); second, our algorithm consists of
a nested loop, which requires a fast algorithm to be practically
feasible.

Following the trend in [20], [21], we are able to write (25) as

(27)

For subsequent expression simplification, let us define the fol-
lowing variables:

(28)

After algebraic manipulations, we can write the right-hand side
of (26) as

(29)

Note that inverse of can be found using the Woodbury
Identity. Taking partial derivatives w.r.t.

(30)

Setting to be zero and denoting
, we have

(31)

We see that when is positive. However,
when is undefined; thus, we default it to
infinity.

Thus, from the analysis of the stationary points, we can see
that (29) has a minimum w.r.t. given by

if

otherwise (32)

In fact, when the parameters of the Gamma distri-
bution in (20) approach zero, we will have

where is some constant [16].

We now state a property that justifies why we selected the SBL
algorithm to enforce sparsity within a group:

Property 1: (SBL Sparsity Property) When the parameters of
the Gamma distribution in (20) approach zero, we have

where is some constant. (See the
Appendix for derivation.)

This evidently induces greater sparsity since the distribution
peaks sharply at zero and has heavy tails. Moreover, from the
analysis given in [19], we know that even when the algorithm
gets to a local minima instead of the desired global minima, we
will still obtain a solution with maximal sparsity.

Thus, we can now formulate the “Group Sparse Bayesian
Learning” (Group SBL) algorithm as summarized in Algorithm
2.

“Group Sparse Bayesian Learning” (Group SBL)
Algorithm

1) Initialize the algorithm with . Here, we are
intializing with the least squares solution and is
the Pseudo-Inverse.

2) For each group , we define the residual
. We then proceed as follows:

3) Initialize
4) Initialize for some

,
and if .

5) Compute and .
6) For , we check the following: If

and , we re-estimate . Else if
and , we add to the model.

Otherwise, if and is finite, remove
and set to infinity. Re-estimate and from
the relevant updated model. Repeat until convergence
or some iteration limit.

7) Iterate over all the groups until convergence is reached.

III. APPLICATION TO SPECTRAL DENOISING IN A SPEECH

RECOGNITION FRAMEWORK

Now that we have described the derivations and details of the
algorithms, we will consider an application of the group sparse
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regularization techniques in the setting of spectral denoising
within a speech recognition framework [1]. In particular, for
ASR, we need to extract features from the audio data, which
constitute the speech recognition front end. Fig. 1 shows a typ-
ical speech recognition system, but with a modified front-end
which incorporates a spectral denoiser. The spectral denoiser
will incorporate the group sparse regularization techniques with
appropriate dictionary partitioning. However, the original fea-
ture matrices that we extract from the audio will have a variable
number of columns (dependent on the duration of the audio),
and thus we will need an alternative feature extraction proce-
dure which we will now describe.

We consider a framework for extraction of features as in [4].
Denote the number of frames for an utterance as . Let the fea-
ture vector corresponding to frame in an utterance be repre-
sented by , where is a dimensional vector which
contains the spectral coefficients, and is the number of fre-
quency bands. Define to be a matrix as follows:

(33)

We define the linearization of a matrix as
follows:

(34)

When we try to linearize , we will obtain vectors of dif-
ferent lengths due to the different audio durations. Thus, we
need to consider the features in blocks to ensure conformity of
dimensions. Consider a sliding window extraction of the data in
this matrix representation . Define a sliding matrix (window)
which has dimensions represents the length in
frames of the sliding matrix. We also define a shift parameter

, which represents the number of frames by which we shift
the sliding matrix.

In doing so, we obtain a total of
matrices of feature vectors. We zero-pad to be a
matrix where .
Let us denote the th sliding window to be

.
We now suppose that we can write as , where

is the observation (feature vector) linearized from
is the dictionary of exemplars, and is a vector of activation.
We are assuming that each test segment can be written as a linear
combination of the basis vectors. This is a reasonable assump-
tion since the spectral representations for different realizations
of the same word have energy localizations in similar regions in
the time–frequency domain.

We thus obtain the following type of linear representations
from our windows:

(35)

After the sparse imputation process, we need to reconstruct a
denoised representation of the original sliding matrix. Define a
counter matrix of dimension where is defined as above.
This counter matrix counts the number of times each entry in the
matrix is optimized due to overlapping window shifts. For-
mation of the final denoised matrix will involve first reshaping

[the solution to optimizing (35)] back to dimensions ,
summing all the resulting reshaped frames, and then doing com-
ponent-wise division by the entries of the counter matrix.

Let us denote the number of columns in our dictionary by
. This is the number of linearized exemplars used for the

spectral denoising process. We then form a dictionary
which consists of segments of clean spectral

shapes. This will be our overcomplete dictionary of exemplar
spectral segments. Section IV will discuss procedures by which
we obtain for as efficiently as possible.

IV. EXPERIMENTAL SETUP

A. Description of Database

For the Aurora 2.0 recognition system, we use all of the 8040
clean training files (containing single and continuous digit utter-
ances) provided in the Aurora 2.0 database training set to train
a continuous digit recognizer in HTK [22].

For the continuous digit recognition task, the Aurora database
consists of test sets labeled N1, N2, N3, and N4 (corresponding
to subway, babble, car, and exhibition noise respectively) in the
Test Set A subset. We merge all audio files from each of N1, N2,
N3, and N4 to give us a total of 4004 files in our test set for a
specific noise SNR. We will be using SNR levels 5, 0, 5, and
10 dB.

To form our dictionary , we get all the single digit audio files
in the training data, extract the spectral features corresponding
to those files, and then construct a dictionary of fixed window-
size spectral exemplars (window length ) comprising whole
digit interpolated spectral exemplars (magnitude domain) like
in [4]. We then linearize these spectral exemplars which will go
into the columns of our dictionary .

Since the Aurora 2.0 is a synthetically corrupted dataset, in
order to further stress test our algorithms, we evaluated them on
the Aurora 3.0 database as well. We trained an Italian continuous
digit recognizer using 961 continuous digit training files and
evaluated the algorithms on a test set comprising 160 continuous
digit utterances.

B. Description of ASR Features

We train the speech recognizer on Mel-frequency cepstral co-
efficients (MFCCs) with the first and second derivatives, with
16 states total for each digit model. We use 23 frequency bands

, a hamming window size of 25 ms, and a frame shift
of 10 ms. For the delta and delta-delta coefficients, we set the
respective parameters in HTK to be both equal to 2 frames.

The feature extraction for the 23 spectral coefficients is done
in MATLAB. We then find a sparse representation for these
spectral coefficients with the optimization algorithms described
above. From the denoised spectral coefficients, we reconstruct
the 13 MFCC coefficients with the first and second derivatives,
which are then passed to the HTK implemented continuous digit
recognizer for the speech recognition.

C. Details of Algorithms Implementation

Our optimization algorithms are implemented using
MATLAB. The Group Sparse LASSO algorithm was im-
plemented using SLEP 4.0 available at www.public.asu.
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edu/~jye02/Software/SLEP/ which provides an optimized
MATLAB routine for solving the Sparse Group LASSO for-
mulation.

For comparison with some widely known state-of-the-art de-
noising techniques, we have also included results obtained from
cepstral mean normalization (CMN) and the ETSI Advanced
Front-end (ETSI AFE) [23].

For the sliding window implementation, we used an exemplar
vector size of 805 and also a shift of ten frames [4] for the Au-
rora 2.0 database and a shift of three frames for the Aurora 3.0
database.

D. Signal Reliability Mask

For our observed vector , there will be components that are
more corrupted with noise as compared to the rest. Thus, if we
estimate from these unreliable components, the estimated
will not be very accurate for the reconstruction of . Thus, we
employ a hard signal reliability mask [24] to denote reliable
parts of the observed data. In particular, the mask matrix will
be the same dimensions as that of the extracted feature matrix,
with 1 to indicate a reliable entry and 0 to indicate a noisy entry.
In this paper, we will use a mask which is estimated from the
noisy speech data itself [25]. This involves getting a local esti-
mate of the SNR by averaging the first 10 frames of the spectral
features of the utterance, which contains information preceding
the voicing of the digits. An estimate of the clean digit utterance
is obtained by subtraction of the noise estimate from the noisy
digit utterance.

After we have an indication of which component is reliable
and which is not, we remove the components deemed unreliable
from our observed vector . We also modify our dictionary
to remove the unreliable rows corresponding to the unreliable
components of . By varying the threshold SNR values we will
be able to get more reliable estimates of . In this paper, like in
[4], we adopt an SNR threshold of 20 dB.

E. Approaches for Dictionary Partitioning

There are many ways to partition the dictionary, of which we
will explore two intuitive approaches:

• We partition the dictionary according to specific speaker
identity. Here, we sort the columns of the dictionary to have
the spectral segments of similar speakers grouped together,
and then we do chunking to ensure that each chunk will
essentially have utterances from the same speaker. This is
a knowledge-based approach for dictionary partitioning.

• Partition the dictionary according to proximity based on
the distance. In this respect, we perform some form of
clustering on the atoms of the dictionary based on the
distance metric to form a predetermined number of clus-
ters, and then we run our grouped regularization technique
based on these clusters. This is a data-driven approach for
dictionary partitioning.

For the first method, we constructed the dictionary with ten
speaker groups.

For the second method, we perform the clustering using the
popular K-means clustering algorithm [26]. In fact, there is a re-
lationship between sparse representation and clustering. We can
think of clustering as sparse representation in its extreme with

TABLE I
SPECTRAL DENOISING RESULTS FOR THE AURORA 2.0 DATABASE

one atom (the mean of the cluster) allowed in the representa-
tion, and the coefficient of the atom is 1. The K-means algorithm
has also been generalized in the K-SVD algorithm [27] for de-
signing overcomplete dictionaries for sparse representation.

To decide on the number of clusters, we experimented on a
smaller tuning set and discovered that, for 2–4 clusters, recogni-
tion accuracies were improving, while for more than 4 clusters
the accuracies started to drop.

V. RESULTS AND DISCUSSIONS

A. Evaluation Results for Aurora 2.0

We first evaluate the following algorithms on the SNR 5-dB
noise corruption setting—sparse Bayesian learning (SBL), least
angle regression implementation of the elastic net (LARS-EN),
FISTA implementation of the Sparse Group LASSO (FISTA
SGL), Group Elastic Net (Group EN), and lastly group sparse
Bayesian learning (Group SBL). We additionally evaluate
LARS-EN, Group EN, and Group SBL for SNR 5 dB, SNR
0 dB, and SNR 10 dB.

Table I presents the results for optimized versions of the al-
gorithms for the SNR 5-dB corruption. Table III presents the
results for SNR 5, 0, 10, and clean conditions.

From Table I, we can see that when the dictionary is grouped
appropriately, coupled with a suitable group sparse regulariza-
tion algorithm, speech recognition performance can be greatly
improved over the original base algorithm. In particular, for our
evaluation of the SNR 5 dataset, we can see that the Group
EN algorithm performs the best with a recognition accuracy of
67.78% with the speaker group clustering technique.

We see that the SBL algorithm did not perform as well as
either the LASSO algorithm or the Elastic Net algorithm. How-
ever, with our Group SBL modification, it performs significantly
better than the SBL algorithm. This can be explained by the fact
that the original SBL formulation could be less adept at handling
collinear dictionaries of spectral exemplars. In our formulation
of the Group SBL algorithm, we are doing rank augmentation to
our dictionary matrix [as evident from (16)]. Thus, when we are
applying SBL as an intermediate step, the augmented dictionary
has a higher chance of being of sufficient rank to result in better
performance as demonstrated by our results in Tables I and III.

Thus, we see that both our proposed algorithms (Group EN
and Group SBL) with the appropriate groupings perform better
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than the Elastic Net and the SBL algorithm respectively. More-
over, the proposed algorithms are also comparable to the FISTA
SGL algorithm and, in the case of the Group EN, outperforming
it.

The results in Table I also show that clustering by knowl-
edge-based speaker identity performs slightly better than the
data-driven K-means clustering with the distance metric
to partition the dictionary. Intuitively, similar spectral profiles
will tend to cluster closer together with the distance. Thus,
during the group sparse regularization process, irrelevant
groups (consisting of spectral profiles which are further away in
the sense) will be zeroed out, and the appropriate partition
will have nonzero coefficients with sparsity enforced by our
proposed algorithms. When we partition the dictionary based
on speaker identity, we are retaining speaker characteristics
within each partition, and distinct spectral profiles coming from
different utterances will be present within a single partition.
Thus, partitioning according to speaker identity can be likened
to performing regularization with a series of more focused
dictionaries, which explains why it is slightly outperforming
the K-means clustering approach.

Another interpretation of K-means clustering is the fol-
lowing: K-means can be likened to an extreme version of sparse
regularization as mentioned earlier. Thus, the additional group
sparse regularization step can be viewed as a refinement step
of the K-means, which has been empirically demonstrated to
yield good recognition rates given the appropriate refinement
algorithm in Tables I and III.

In fact, our algorithms can be likened to a subset of the feature
compression algorithm in the ETSI AFE [23]. Specifically, the
dictionary learning algorithms is analogous to the vector quanti-
zation step in the compression algorithm pipeline of ETSI AFE.

Regularization in the spectral domain amounts to spectral de-
noising [4]. From the spectral plots, we can see that LARS-EN
is improving upon the noisy version with successful removal
of portions of the noise artifacts, and the Group EN algorithm
further improves upon the LARS-EN algorithm by closer re-
semblance to the original clean spectrum, as illustrated in the
example of Fig. 2.

B. Runtimes

Table II presents runtime results for our algorithms and the
Sparse Group LASSO algorithm.

We can see that FISTA SGL runs the fastest followed closely
by Group EN and, lastly, by Group SBL. To ensure that we are
comparing the algorithms fairly, the algorithms are ensured to
have converged sufficiently and are evaluated on the same plat-
form (Core 2 Quad Processor with 8 GB of RAM). All algo-
rithms are evaluated in MATLAB.

In our group regularization formulations, we can see that we
are retaining the complexity advantages of the base algorithms.
In particular, if we cap the iterations to a limit, the complexity
is the same as that of the base algorithms.

It has been proven that the Iterative Shrinkage Thresolding
Algorithm (ISTA) has a sublinear convergence ( where

is the iteration) and FISTA further improves on it by a quadratic

Fig. 2. The diagram above shows the spectral plots of a particular utterance. As
we can see, LARS-EN improves greatly upon the noisy version with much of the
noise artifacts eradicated, and the Group EN algorithm further improves upon
the LARS-EN algorithm by a closer resemblance to the original clean spectrum.

TABLE II
AVERAGE RUNTIME RESULTS FOR THE GROUP SPARSE REGULARIZATION

ALGORITHMS FOR SNR 5-dB CORRUPTION

TABLE III
RESULTS FOR SNR �5 dB, SNR 0 dB, SNR 10 dB CORRUPTION,

AND CLEAN CONDITIONS FOR AURORA 2.0

factor [14]. In this paper, we have experimentally ver-
ified that our Group EN formulation runs at comparable speed
as the FISTA implementation.
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TABLE IV
RESULTS FOR AURORA 3.0 NOISY DATASET

C. Aurora 2.0 Results for Other SNR Levels

As evident from the results in Table III, we see that the Group
EN algorithm is consistently better than the Elastic Net under
different levels of noise corruption, which shows that grouping
helps in improving speech recognition rate.

An important aspect of denoising algorithms is performance
under clean conditions. We evaluated the proposed algorithms in
clean conditions, and results show that the Group EN algorithm
suffers from some amount of deterioration, while the Group
SBL exhibits good robustness in clean conditions. For good re-
construction under clean conditions, sparsity is important and,
since the Group SBL algorithm is enforcing sparsity differently
from the Group EN, we see that the better performance of the
Group SBL algorithm when compared to the Group EN algo-
rithm under cleaner conditions could imply that the Group SBL
way of enforcing sparsity is more efficient under cleaner condi-
tions.

D. Evaluation of Algorithms on Real Noisy Data

We additionally evaluate our algorithms on the Aurora 3.0
Italian database. Our test set is comprised of 160 continuous
digit utterances, randomly selected from the following noise
types: low-speed rough road, town traffic, stop motor running,
and high-speed good road. Table IV shows recognition results
after denoised by Lars-EN, Group EN, Group SBL, the ETSI
Advanced Front-end, and lastly Cepstral Mean Normalization.

On this realistic dataset, we see that the Group EN is the best
performing, followed very closely by the ETSI AFE and the
Group SBL algorithm. We see that, in general, our proposed
dictionary-based sparse regularization algorithms are compa-
rable with state-of-the-art techniques and, in particular for the
Group EN algorithm, we are slightly outperforming ETSI AFE.
For Aurora 2.0, since the dataset is synthetically corrupted with
additive noise, we can expect to observe some algorithms per-
forming better than others due to their handling of additive noise
better. However, in the presence of the more complicated real
noisy conditions, the robustness of our proposed algorithms is
made apparent.

VI. CONCLUSION AND FINAL REMARKS

In this paper, we introduced two novel variations of group
sparse regularization techniques: the Group Elastic Net algo-
rithm and the Group Sparse Bayesian Learning algorithm. We
see that the Group EN algorithm is the better performing of
both algorithms for the Aurora 2.0 and 3.0 dataset. We also see
that the Group SBL algorithm exhibited least deterioration with
clean data and improved greatly upon the performance of SBL.
Moreover, on the Aurora 3.0 database, the Group SBL algorithm

exhibited greater robustness compared to Elastic Net under the
more practical real noise condition. In terms of runtime, we see
that the Group EN and Group SBL algorithms are comparable
with FISTA SGL. We also see that the results obtained from our
algorithms are comparable with the ETSI AFE. We believe that
further improvements can be achieved with an adaptive dictio-
nary update approach. In this work, the overcomplete dictionary
is formed by a simple strategy. In adaptive dictionaries, essen-
tially we would update the dictionary as we perform regulariza-
tion. This can ensure that only representative spectral segments
are retained in the dictionary, and irrelevant spectral segments
are eliminated.

The paper also explored two intuitive strategies for par-
titioning the dictionary of exemplars, namely by K-means
clustering with the distance metric and also by speaker
identity. We find that the speaker clustering strategy performs
better than the clustering with K-means using the distance
metric.

Future work in terms of investigating better partitioning
strategies can be directed towards finding meaningful hybrids
between data-driven approaches and knowledge-based ap-
proaches.

Another interesting extension will be to expand our frame-
work to be able to do speaker identification. In this work, the
speakers in the dictionary do not generally overlap with the
speakers in the test set, so speaker identification is not pos-
sible within the current framework. However, due to the fact
that the partitioning is doing some form of discrimination, our
techniques could potentially be adapted for this task.

APPENDIX A
DERIVATION OF PROPERTY 1

From (20) we have

where is the Gamma function. Thus,

where . Thus, we have
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As , we have where is
some constant.
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