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ABSTRACT

In this work, we studied the problem of fall detection us-
ing signals from tri-axial wearable sensors. In particular, we
focused on the comparison of methods to combine signals
from multiple tri-axial accelerometers which were attached
to different body parts in order to recognize human activi-
ties. To improve the detection rate while maintaining a low
false alarm rate, previous studies developed detection algo-
rithms by cascading base algorithms and experimented on
each sensory data separately. Rather than combining base
algorithms, we explored the combination of multiple data
sources. Based on the hypothesis that these sensor signals
should provide complementary information to the characteri-
zation of human’s physical activities, we benchmarked a fea-
ture level and a kernel-level fusions to learn the kernel that
incorporates multiple sensors in the support vector classifier.
The results show that given the same false alarm rate con-
straint, the detection rate improves when using signals from
multiple sensors, compared to the baseline where no fusion
was employed.

Index Terms— Fall Detection, Multi-Sensor Fusion,
Healthcare

1. INTRODUCTION

The world is growing old [1] and one of the biggest concerns
toward the elderly population, especially people who lead a
independent living, is the fall. A fall could cause severe injury
to aged people and puts heavy burden on the healthcare sys-
tem. Recently, the tasks related to fall detection have drawn
attention in the human activity recognition (HAR) community
in order to improve human’s life. In addition to fall detection,
researcher also took a proactive approach to fall risk factor
analysis and fall prevention mechanism [2].

A multitude of previous work [2, 3] have been dedicated
to the task of fall detection, investigating various aspects de-
pending on the devices and the data types. In general, the
studies can be categorized into three classes: the vision based,
the ambient sensing based and the wearable sensor based. The

vision based and the ambient sensing based methods are typi-
cally spatially localized so it is important to have the informa-
tion of whereabouts of the users in advance. The vision based
approach based is also known for its high computational cost
and the privacy issue. The wearable sensor based approaches
are economical and preserve users’ privacy, but are compara-
bly more obtrusive since the users are required to put sensors
on their body parts. Another common approach is to exploit
information from a combination of methods aforementioned.

In general, fall detection systems based on a single sen-
sor are lacking robustness and sufficient accuracy, and hence
multi-sensory systems are gaining popularity. For instance,
the work by Grassi et al. [4] demonstrated the effectiveness
of fusing multiple sensors including a camera, an accelerom-
eter and a microphone. Even within the category of wearable
sensor based methods, different types of sensors could pro-
vide complementary information [5].

Recently, Koshmak et al. [3] have surveyed the work on
the fusion of multiple sensors and identified some of open
challenges. The major issue specifically pertain to the wear-
able sensors is the reliability of the wireless connection during
data acquisition, which could cause delay and loss of signals.
Another one is that a certain level of obtrusiveness is possi-
ble if users have to wear it for a period of time. Past work on
fusing multiple wearable sensors mainly contributed to fusion
of heterogeneous sensors; for example, using an accelerome-
ter and a magnetometer [5]. However, homogeneous sensors
attached to different body parts could also provide comple-
mentary information.

Our work belongs to the wearable sensor based approach,
in which we considered the sensory signals captured by tri-
axial accelerometers. Particularly, we studied the fusion of
multiple accelerometers, attached to different body parts, at
the feature-level and the kernel-level.

2. RELATED WORK

Gjoreski et al. [6] studied fall detection using four ac-
celerometers attached to four body parts including the chest,
waist, right ankle and right thigh, and experimented on dif-



ferent combinations of sensory signals for the tasks of pos-
ture recognition and fall detection. A random forest model
was trained to perform posture recognition, followed by a
rule based algorithm for fall detection. While their work is
quite similar to ours in the use of multiple homogeneous sen-
sors, there are differences we would like to stress. First of
all, we focused on the comparison of fusion methods using
information from wearable sensors, while they concentrated
on finding the optimal placement of the sensors. Second, in
our algorithm the fall detection is one-step and data driven. Li
et al. [7] proposed a grammar-based fall detection framework
using multiple acceleration and vibration monitors, focusing
on finding the most critical placement for sensors. Many other
investigations on the fusion of heterogeneous data sources are
reviewed in the work of [3], but none of them has studied
the comparison of different fusion techniques. As verified by
Gjoreski et al., using more sensors would improve the per-
formance. In this work, we compared two methods of fusing
multiple homogeneous data sources.

The performance of each proposed systems varies under
different experimental conditions. To have a fair compari-
son, we followed closely to the recent work by Cheng et al.
[8] on the public data we used. Cheng et al. has developed
a cascade-AdaBoost-SVM classifier for the task of fall de-
tection and tested the algorithm on each accelerometer sepa-
rately. In contrast to their work, we leveraged on the combi-
nation of information from multiple sources, rather than com-
bination of algorithms, to improve the detection rate.

3. DATA SET AND FEATURE EXTRACTION

3.1. Data Set

We used the Localization Data for Person Activity Data Set
on the UCI’s machine learning repository [9] for the experi-
mentation on the fall detection. In this data set, five volunteers
were asked to perform a series of activities, which is called the
scenario. The scenario, though continuous, can be broadly
divided into three stages including two rapid falls (walking
to falling to lying) and then one slow fall (sitting to falling
to sitting down). Every volunteer performed the scenario five
times so there were 25 recordings of the scenario in the data
set. Every recording of the scenario lasted about 3-5 minutes.

During performing the scenario, volunteers wore four tri-
axial accelerometers on their chest, belt, right ankle and left
ankle. As a result, every recording is in fact a set of four
3-dimensional multivariate time series. The accelerometers
kept radio contact with a sensor mounted on the wall and cal-
culated its location based on the time difference of arrivals
and the arrival angle, which indirectly incurred time-varying
delays. Three of the four accelerometers had the sampling
frequency at 10 Hz so the (x, y, z) coordinates of the sensors
were recorded roughly every 0.1 second with minor time de-
lays due to wireless connection. However, there was one sen-

sor with the sampling frequency at 5 Hz. Moreover, while
most of the time the sensors and the wireless connection
worked regularly well, there was certain number of short time
intervals when the sensors malfunctioned or the wireless con-
nection was unstable and the sensors failed for several sec-
onds. It is therefore necessary to fix the mismatch between
samples, due to different sample frequencies and loss of sam-
ples, before fusing information from four accelerometers.

3.2. Feature Extraction

In a wearable sensor based system, common features for the
fall detection include the (x, y, z) coordinates of the tri-axial
accelerometers, the signal magnitude vector (SMV), the sig-
nal magnitude (SMA) and so on. The (x, y, z) coordinates are
recorded according to the sampling frequency and denoted by
x[n], y[n] and z[n] for the x-, y- and z- coordinates, respec-
tively, at time n. When rapid falls occur, it is assumed to have
drastic changes in the values of the raw (x, y, z) coordinates,
and thus the raw coordinates should contain the information
for detecting when a fall takes place. From top three panels
of Fig. 1, it is clear that the assumption is valid while we can
also see that there exist lots of drastic changes, seemingly due
to noise, in the coordinate values when the actual activity is
not a fall.

The SMV defined by

SMV[n] =
√
x[n]2 + y[n]2 + z[n]2

measures the intensity of the tri-axial coordinates. Because
the locations calculated by the accelerometers are noise-
corrupted, the SMA tries to minimize the effect of noise by
performing integration over a window of time frame, defined
as

SMA[n] =
1

N

(
n∑

i=n−N+1

|x[i]|+ |y[i]|+ |z[i]|

)

where N is an integer denoting the size of the window to in-
tegrate over.

In addition to the five low-level features, x[n], y[n], z[n],
SMV[n] and SMA[n], we created the delay embedded vectors
f [n] [10]:

f [n] =


xn

xn−1
...

xn−N+1


where xn = [x[n], y[n], z[n],SMV[n],SMA[n]]T. The delay
embedded vectors with a fixed size of memory N take into
account the temporal information in human activities since a
low-level feature vector alone would be too short and tempo-
rally localized to encode such dynamics.
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Fig. 1. Low-level features from the sensor on the chest of first
volunteer. The top three panels are the (x, y, z) coordinates,
and the fourth and the fifth are the SMV and SMA, respec-
tively. The last panel indicates the time duration when a fall
is in process.

4. METHODOLOGY

4.1. Baseline

Given that the delay embedded feature vectors f already in-
corporate temporal information, we formulated the fall detec-
tion problem into a binary classification problem using SVM
as the baseline. For each recording there were three falls and
the onset of the falls was labeled as positive, while the other
data points were negative. Therefore, there were 75 positive
samples from each accelerometer, while the number of neg-
ative samples varied from 35K to 42K, due to the mismatch
among the accelerometers. Because of the huge difference be-
tween the number of samples from each class, we employed a
cost-sensitive approach [11] to deal with the class imbalance
issue.

4.2. Fusion and Detection Algorithms

4.2.1. Match the Frequencies

Before we could jointly analyze the sensory signals, we had
to solve the synchronization issue due to different sampling
frequencies and the loss of data points in the data acquisition
phase. This pre-processing was the key step to enable the
following joint analysis.

First of all, we removed the minor time-varying delays
due to time difference arrivals by rounding the time stamps to
the nearest tenth second. Second, by viewing the loss of data
points as a change of the sampling frequency, we only needed
to match the frequencies in the mixed-frequency time series
data. Mixed-frequency data are common in the area of econo-

metric studies [12]; for example, the gross domestic product
is calculated quarterly whereas many leading economic in-
dicators are monthly released. The most common empirical
solutions to match the frequencies are the aggregation and the
interpolation methods. The standard aggregation method av-
erages over the high-frequency data to down-sample, while
the interpolation method, though rarely used, is to up-sample
the low-frequency data by interpolation. Both methods did
not work for our problem. For the former, a rapid fall could be
short in time duration so to down-sample by aggregating the
sensory signals would incur the risk of losing the key informa-
tion for fall detection. The latter was not applicable because
the fact that time efficiency is important in the application of
fall detection so we can’t afford to delay the decision to wait
for interpolating loss of data points which lasted several sec-
onds. Instead, we employed a simple approach by replicating
the previous value to up-sample the low frequency data, and
match the number of samples in the raw (x, y, z) coordinate
sequences from four tri-axial accelerometers. In an online
situation to cope with the unreliable connection and the dif-
ference between sensor models, it may be the most computa-
tional efficient one.

4.2.2. Feature-Level Fusion

After matching the sampling frequencies of the sensory sig-
nals from the four accelerometers, we prepared the delay em-
bedded feature vectors f l[n], fr[n], f b[n] and f c[n] using the
low-level features from the accelerometer at left ankle, right
ankle, belt and chest, respectively. A straight-forward method
to combine the information captured by each accelerometer
was to concatenate four delay embedded feature vectors f l[n],
fr[n], f b[n] and f c[n] into a higher-dimensional one: f cas[n].
We then trained a SVC with the RBF kernel on the concate-
nated feature vectors f cas[n] for the task of fall detection
with the assumption that this feature-level fusion would lever-
age the hypothesized complementary information provided
by each accelerometer and improve the detection rate while
maintaining the same false alarm rate. Likewise, there was
still the issue of class imbalance, so the same cost-sensitive
class weights Ck for the soft margin regularization coefficient
were specified during the training.

4.2.3. Kernel-Level Fusion

In kernel methods, including SVM, the choice of the kernel
function plays an essential role in the generalization perfor-
mances. A poor kernel may fail to identify the similarity be-
tween data points. Therefore, many studies have developed
learning algorithms for the optimal kernel in kernel methods.
Among them, Lanckriet et al. [13] proposed that such a kernel
is in the form of a linear combination of some base kernels,
such as the RBF or linear kernels; the kernel combination co-
efficients and the SVM parameters together can be learned
through the training phase. This approach is referred to as the



multiple kernel learning (MKL), and is still an active research
topic in the machine learning community. Since then, sev-
eral approaches have been proposed for efficient learning of
MKL, including methods based on the sequential minimiza-
tion optimization (SMO) [14], on the semi-infinite linear pro-
gramming (SILP) [15, 16], on the sub-gradient [17] and on
the level-method [18]. The objective function in all of the
above methods consists of a simplex constraint on the kernel
combination weights and thus leads to a sparse selection of
base kernels, also called the L1MKL.

arg min
α,b,ξ

1

2

∑
m

1

dm
(α� y)TKm(α� y)

+C

C1

∑
{i|yi=1}

ξi + C0

∑
{i|yi=0}

ξi


subject to yi

∑
m

n∑
j=1

αjyjkm(xj ,xi) + b

 ≥ 1− ξi

∑
m

dm = 1, dm ≥ 0, ξi ≥ 0. (1)

The formulation of L1MKL[17] in Eq.(1) is similar to the
single-kernel SVM, except that the kernel matrix and the ker-
nel function are now indexed by subscripts to denote each
base kernel, and the kernel matrix is replaced by a linear com-
bination of multiple base kernel matrices.

Despite the improvement since [13], Cortes et al. [19]
and Kloft et al. [20] have shown that a simple average of the
base kernels can outperform the L1MKL on some real-world
applications. The sparse selection of the base kernels due
to the simplex constraint on the kernel combination weights
was conjectured to be omit some useful information during
the modeling. They therefore introduced the L2-based MKL
and Lp-based MKL, respectively, for a non-sparse selection
of base kernels. Recently, Xu et al. [21] has shown that the
traditional L1MKL can be viewed as a hard margin MKL,
which selects the combination of a subset of base kernels that
minimize the objective function and throw away any other in-
formation. They proposed a soft margin MKL in analogy to
the soft-margin SVM, that makes SVM robust by introducing
the slack variables.

Until now, we only used a single kernel in the SVC. Our
observation was that because of the physical limitation, a hu-
man’s belt and ankle would have different ranges of varia-
tions. For example, the sensor at a human’s belt would not
leave the center of mass of the body too far away but the sen-
sor at the right ankle could have a large variation in the X-Y
plane. The hyper-parameter γ in SVM controls the variance
of the kernel, and tries to capture the variation of the train-
ing data. It was natural to hypothesize that to model the data
from each source a γ for each of them would result in a bet-
ter model. Therefore, to take into consideration the differ-

ence in distributions of variation between accelerometers, we
further employed the MKL framework for the task of fall de-
tection. Since the MKL formulation is a sum of weighted
kernels, each trained on each accelerometer, this fusion is at
the decision level. We employed the soft margin MKL [21] to
combine the information provided by multiple accelerometers
in this study, instead of the traditional L1MKL because we
hoped to utilize all of the information and avoid cases where
in MKL model may lead to, say extremely, just one of the
sensors.

5. EXPERIMENTS

In the baseline, we treated signals from each accelerome-
ter separately as previous studies did [8]. A support vec-
tor classifier (SVC) with the RBF kernel was employed.
We did five-fold cross validation on the delay embedded
feature vectors using the LIBSVM software [22]. The
hyper-parameters C and γ were tuned by grid search in
the range of C = 10−1, 100, 101, 102, 103 and γ =
10−4, 10−3, 10−2, 10−1, 100. A cost-sensitive approach was
used to adjust the soft margin based on the class size to deal
with the class imbalance issue. Also because of the large
number of negative samples, a single measure of accuracy
rate was not enough. Therefore, the performance was eval-
uated by three measures, the detection rate (DR), the false
alarm rate (FAR) and the accuracy rate (AR) defined by

DR =
TP
p
× 100%

FAR =
FP
q
× 100%

AR =
TP + TN
p+ q

× 100%

where p and q are the number of positive and negative sam-
ples, respectively, and TP, TN and FP are the number of
true positive, true negative and false positive results, respec-
tively. After the initial grid search, we finer tuned the hyper-
parameters to reach the same false alarm rate at 5% for each
classifiers. The performance of the baseline is summarized in
the Table 1.

Accelerometer Position
Left Right
ankle ankle Belt Chest

AR 94.84% 94.88% 94.92% 94.95%
DR 24.0% 30.67% 57.3% 73.3%
FAR 5.0% 5.0% 5.0% 5.0%

Table 1. The performance of the fall detection using the sup-
port vector classifier on the sensory signals from each sensor
at different body parts.



In terms of the accuracy rate, the SVC performed al-
most the same with the sensory signals from each tri-axial
accelerometer. However, given the false alarm rate set to
5%, the detection rate varied from one accelerometer to an-
other. From the summary, we can see that the height of the
accelerometer, i.e. the z-coordinate plays an important role
in detecting the falls because the detection rate monotonically
decreases as the height of the accelerometer decreases. At the
height of the ankles, the z-coordinate offer next to zero con-
tribution to the detection, but these two accelerometers at the
ankles apparently were still able to recognize one fourth to
one third of the falls.

It is to be noted, the baseline result using SVC is similar to
the SVM baseline reported in Cheng et al. [8], but not exact.
The reason is that they randomly selected only 100 negative
samples from each recording, 2.5K in total, for the experi-
ments and left the rest unused. We tried to repeat their ex-
periments and found out that the result kept changing at each
randomization, and some randomizations outperformed their
result and some did not. Hence we took all of the negative
samples, 35K to 42K depending on sensors, into our exper-
iment. The trend of their result and ours are similar where
chest sensor captured the most useful information, belt sen-
sor next and the sensors at ankles the worst. The detection
rates are similar with a minor degradation except on the belt
accelerometer.

For the feature-level fusion, we trained an SVC with RBF
kernel on the concatenated features f cas[n]. A five-fold cross
validation was performed as well. The improvement based on
the feature fusion is significant; both accuracy rate and de-
tection rate increase, compared to the baseline. There is only
a modest improvement on the accuracy but there is a 9.37%
(absolute) improvement on the detection rate. For the kernel-
level fusion, we prepared each base kernel based on the delay
embedded features from each accelerometer. The kernel type
was the RBF kernel. Then using the hinge loss soft margin
MKL [21] we trained a MKL-SVC with five-fold cross val-
idation. It turns out that the overall performance ends up in
the middle of the four results in the baseline. The kernel com-
bination weights range from 0.2 to 0.28, therefore the result
is close to an average of the baseline. The summary is in the
Table 2.

Fusion type
Feature-level Kernel-level Best in [8]

AR 95.03% 94.61% 98.23%
DR 82.67% 34.67% 88%
FAR 5.0% 5.0% 1.27%

Table 2. The performances based on the feature-level and the
kernel-level fusion. The best in [8] is the cascade-AdaBoost-
SVM classifier using the chest accelerometer.

6. DISCUSSION

First of all, the result on the feature-level fusion seems
promising. The hypothesis that each accelerometer contains
complementary information to one another is validated from
the gain of the performance. The frequency match-up ap-
proach is very simple, easy to implement and suitable for
an online situation. During the training phase, the comple-
mentary information from each accelerometer is enhanced
while the redundant and noisy information is suppressed. The
model complexity is low, only as expensive as a SVM. How-
ever, the MKL result was disappointing. The kernel-level
fusion can only take the result given by each kernel propor-
tional to the corresponding kernel combination weight. The
training requires multiple kernel matrices and and their com-
bination weights, which requires more memory and computa-
tional power.

The comparison with Cheng et al. [8] is to provide an
idea of how close the proposed method is to the state-of-the-
art. However, there are a few things to address; first, the op-
timization directions are different. We were focused toward
the combination of data sources while Cheng et al. focused
on the combination of algorithms. Second, we used a larger
number of negative samples compared to their experiments.

There are a few future directions we would like to pur-
sue. First of all, we only used the RBF kernel in this study.
We would like to know how does other kernels perform us-
ing the feature-level fusion. Second, despite the negative re-
sult on MKL framework, we are still interested in deploying
one kernel for each dimension of the delay embedded features
and implicitly performed the feature selection using L1MKL.
Further, we would like to know if we can reduce the number
of accelerometers in the feature-level fusion while maintain-
ing the performance, and if so, which combination works the
best. The extension of the current work to a combination of
multiple algorithms, such as in [8] is also interesting.

7. CONCLUSION

We explored the data fusion in multiple homogeneous wear-
able sensors for the task of fall detection. We addressed the
synchronization issue by matching up the frequencies among
sensors to enable the joint analysis and modeling. The result
shows that at the feature-level fusion, the detection rate gains
9.37% and the accuracy rate gains less than 1% while main-
taining the false alarm rate. We also showed that the kernel-
level fusion of multiple accelerometer using MKL framework
is not successful.
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