
Available online at www.sciencedirect.com

Computer Speech and Language 27 (2013) 554–571

Enabling effective design of multimodal interfaces for
speech-to-speech translation system: An empirical study of

longitudinal user behaviors over time and user strategies for coping
with errors�

JongHo Shin, Panayiotis G. Georgiou ∗, Shrikanth Narayanan
Signal Analysis and Interpretation Laboratory (SAIL), USC Viterbi School of Engineering, Los Angeles, CA 90089, United States

Received 22 June 2010; received in revised form 30 January 2012; accepted 2 February 2012
Available online 11 February 2012

Abstract

The study provides an empirical analysis of long-term user behavioral changes and varying user strategies during cross-lingual
interaction using the multimodal speech-to-speech (S2S) translation system of USC/SAIL. The goal is to inform user adaptive
designs of such systems. A 4-week medical-scenario-based study provides the basis for our analysis. The data analyzed includes
user interviews, post-session surveys, and the extensive system logs that were post-processed and annotated. The annotations
measured the meaning transfer rates using human evaluations and a scale defined here called the concept matching score.

First, qualitative data analysis investigates user strategies in dealing with errors, such as repeat, rephrase, change topic, start over,
and the participants’ self-reported longitudinal adaptation to errors. Post-session surveys explore participant experience with the
system and point to a trend of user-perceived increased performance over time.

The log data analysis provides further insightful results. Users chose to allow some degradation (84% of original concepts) of
their intended meaning to proceed through the system, even after they observed potential errors in the visual output from the speech
recognizer. The rejected utterances, on average, had only 25% of the original concepts. This user-filtered outcome, after the complete
channel transfer through the S2S system, is that 91% of the successful turns result in transfer of at least half the intended concepts
while 90% of the user rejected turns would have conveyed less than half the intended meaning.

The multimodal interface results in 24% relative improvement in the confirmation mode and in 31% relative improvement in the
choice mode compared to the speech-only modality. Analysis also showed that users of the multimodal interface temporally change
their strategies by accepting more system-produced choices. This user behavior can expedite communication seeking an operating
balance between user strategies and system performance factors. Lastly, user utterance length is analyzed. Longer utterances in
general imply more information delivered per utterance but potentially at the cost of increased processing degradation. The analysis
demonstrates that users reduce their utterance length after unsuccessful turns and increase it after successful turns and that there is
a learning effect that increases this behavior over the duration of the study.
© 2012 Elsevier Ltd. All rights reserved.
Keywords: Speech-to-speech; S2S; Speech translation; Longitudinal studies; User interfaces; HCI; User behaviors

� This paper has been recommended for acceptance by ‘Roger K Moore’.
∗ Corresponding author. Tel.: +1 213 740 4654.

E-mail addresses: jonghosh@alumni.usc.edu (J.H. Shin), georgiou@sipi.usc.edu (P.G. Georgiou), shri@sipi.usc.edu (S. Narayanan).

0885-2308/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.csl.2012.02.001

http://www.sciencedirect.com/science/journal/08852308
dx.doi.org/10.1016/j.csl.2012.02.001
mailto:jonghosh@alumni.usc.edu
mailto:georgiou@sipi.usc.edu
mailto:shri@sipi.usc.edu
dx.doi.org/10.1016/j.csl.2012.02.001


1

f
m
b
l
b
I
r
(

d
K
f
t
i
a

d
e
2
P
1
t
s
e
s
l
s
t
f
l
O
(
a

F
c

1
2
3

4

o
s
(

J. Shin et al. / Computer Speech and Language 27 (2013) 554–571 555

. Introduction

Speech is one of the most natural and promising communication modalities for driving human–human machine inter-
aces. The globalization and internationalization of today’s world are creating interpersonal interaction scenarios across

any domains, such as healthcare, business, and tourism, that are increasingly cross-lingual. Since potential language
arriers cause significant communication and access restrictions, the demand for technologies that can help bridge the
anguage gap has grown significantly. Technologies for translation are being developed rapidly but most efforts have
een in the field of text-based (machine) translation, such as “Google translate” (http://www.google.com/translate).
n the field of speech translation, while the first commercial applications are only beginning to appear now, vibrant
esearch efforts have been underway. These include those at BBN (Kao et al., 2008), CMU (Bach et al., 2007), IBM
Gao et al., 2006), SRI (Precoda et al., 2007), and USC (Narayanan et al., 2003; Ettelaie et al., 2006).

To implement a well-performing and useful speech-to-speech (S2S) translation system, intensive research is deman-
ed along multiple dimensions: from speech recognition and machine translation to interface design (Young, 2002;
night and Marcu, 2005; Oviatt, 2006). In particular, studies about modeling a user of a speech interface are critical

or ensuring wide applications of such a system. Such findings could lead to a speech translation system that can adapt
o users in various situations in real time. User-centered systems, in general, that utilize user demographics, cultural
nformation, and user preferences lead to improved usability and satisfaction (Rich, 1999; Krulwich, 1997; Bernstein
nd Reinecke, 2007; Jannach and Kreutler, 2005).

Most of the user modeling studies in the speech technology community have taken place in the context of spoken
ialog systems. Notable user modeling work includes the design and evaluation of multimodal interfaces (Oviatt
t al., 2004; Dybkjær et al., 2004; Deng et al., 2004), analysis of user behaviors (Oviatt et al., 2004; Shin et al.,
002), probabilistic user models (Eckert et al., 1997; Zukerman and Albrech, 2001), utility-based models (Horvitz and
aek, 2001), knowledge-based models (Komatani et al., 2003), and user simulation (Levin et al., 2000; Eckert et al.,
997; Scheffler and Young, 2002). It should be noted that mediated interpersonal communication systems (e.g., S2S
ranslation systems) have been used in a very limited way in this context. Early user research with S2S translation
ystems has been conducted under the Verbmobil project (Bub and Schwinn, 1996) and in our previous work (Shin
t al., 2006). Recent advances in S2S systems, however, allow us to conduct further detailed user modeling studies,
uch as that considered in this work. One goal for the present study is to explore the potential learning effects of
ongitudinal usage of the S2S translation system. We want to investigate whether the users acquire over time effective
trategies to deal with potential sources of uncertainty that eventually can boost the performance. Another goal is
o investigate the use of multiple input modalities (e.g., speech, mouse, and keyboard) together and the benefits in
acilitating machine-mediated S2S communication. Previous work in spoken dialog systems showed that cognitive
oad is reduced while using a multimodal interface in comparison with that of a speech-only interface (Oviatt, 2006;
viatt et al., 2004). In addition, it was reported that multimodal interfaces significantly improved user experience

Deng et al., 2004). Furthermore speech-centric multimodal interfaces provide opportunities for enhanced usability
nd naturalness and are an increasingly important research direction (Dybkjær et al., 2004; Flanagan, 2004).

In the present study, we set up and performed a scenario-based experiment, in which native speakers of English and
arsi (Persian) interacted using a multimodal interface of an S2S translation system. Three different types of data were
ollected from the experiment: interviews with participants, surveys, and the log data of the system.

We analyzed the data, both qualitatively and quantitatively, in the following aspects:

. user satisfaction with the multimodal interface, the S2S translation system, and the experimental setup;

. level of perceived user proficiency over time in using the multimodal interface of the system;

. user actions upon successful/unsuccessful interaction turn, with a focus on retry/accept behavior and utterance
length;

. success of interaction, in terms of the number of concepts transferred through the system.
An emphasis of the present study is the consideration of “meaning” as a part of the metric to assess the performance
f both the S2S translation system and the related user behaviors. Much like a human translator, the S2S translation
ystem attempts to transfer “meaning” from one language to another language, such as from English to Farsi (Persian)
Narayanan et al., 2003). The process is inherently lossy. Vocabulary words and phrases need to be changed to their

http://www.google.com/translate


556 J. Shin et al. / Computer Speech and Language 27 (2013) 554–571
Fig. 1. A scene of conversation between an English-speaking doctor and a Farsi-speaking patient who use the Transonics system for translation.
The GUI of Transonics presents a few recommendations to users after the users speak a sentence.

legitimate representation in the target language. However, they will often be re-mapped to more distant equivalents,
and grammar and syntax of the target language also typically degrade. As a result, the original meaning will be altered
at several different levels (Larson, 1997). It is conveyed sometimes quite closely but more often poorly. Therefore,
measuring how well “meaning” is transferred by the S2S translation system becomes important. Existing text translation
metrics, such as BLEU (Papineni et al., 2001) and NIST (Doddington, 2002) scores, are based on the comparisons of
several human translations with system-produced translations using lexical matching. One recently developed NIST
metric utilizes the odds of successfully transferring low-level concepts (Sanders et al., 2008). Likewise, we devised
a measure called “concept matching score” in order to measure how well “meaning” is transferred during online
conversations of the experiment. Offline log data were utilized for measuring the score. This score refers to the number
of concepts in a user utterance (source), which are carried over to the machine-produced utterance (target). Our metric
is not intended as a general automated metric but is a human opinion score of the quality of concept transfer.

The paper is organized as follows: the S2S translation system used in our experiments is introduced in Section 2.
The experiment set-up and the collected qualitative and quantitative data with descriptions are described in Section 3.
The analysis results are presented in Section 4. The discussion is provided in Section 5 and conclusions are in Section
6.

2. System

In this study, we used the Transonics (Narayanan et al., 2003) system designed for mediating and logging spoken
conversations between native English and Farsi speakers. Transonics is a two-way translation system with a multimodal
interface employing speech, a graphical user interface (GUI), and “push-to-talk” modalities. The application facilitates
two-way spoken interactions between an English-speaking doctor and a Farsi-speaking patient. The goal of the system
is to facilitate a task-oriented, rather than a free-form socio-emotional, interaction between two participants. While the
system can operate in any domain given the appropriate acoustic and language models; the ones incorporated in the
present system focused on the medical domain. To help understand how the system works, Fig. 1 shows a snapshot
image from an interaction and a screen capture of the device in a doctor–patient interaction. On the right the processing
of the doctor’s utterance “you have a fever?” is shown as the ASR output on the top line. The system presents the user
two machine-translation options: “you have fever” and “Do you have a fever.”

Transonics incorporates a push-to-talk interface with which users initiate a speaking turn. This interface has both
advantages and limitations; users verify concepts before executing the final decision for ‘speaking-out,’ but conversa-
tions are conducted under a somewhat less spontaneous setting. By design, the interface control of Transonics is also
asymmetric in the sense that English speakers (doctors) have exclusive control of the interface, while the Farsi speakers
(patients) cannot access the GUI. Two assumptions were made for this design: (1) monolingual patients are assumed
to be little trained in using the system and of limited literacy, and controlling the system would not beneficially affect
the interaction; (2) even in a monolingual setting, doctors typically lead the interaction; therefore, this asymmetric

setting of the interface design is expected to ensure uniform and realistic results from the experiments (Meeuwesen
et al., 1991; Onga et al., 1995).

The system decides if the recognized utterance is close enough to a particular utterance or a concept class based on the
confidence scores of automatic speech recognition (ASR) and concept classification (i.e., utterance canonicalization). If
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Fig. 2. Simplified data flow diagram of our two-way speech translation system for doctor–patient interactions. English and Farsi automatic speech
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ecognition (ASR) models get the input from users (doctor and patient, respectively) while the machine translation (MT) module is responsible for
utomatic translation and classification of user utterances. The dialog manager (DM) manages the interactions between the modules- and delivers
he data to users through the GUI. Users finally hear the synthesized output through the text-to-speech (TTS) synthesizer.

eemed confident, the cluster-normalized concept form will be transferred to the doctor and, if not, a direct potentially
oisy statistical phrase-based translation of the text will be provided. In the choice mode of operation, this decision is
eft to the user who, as shown in Fig. 1, can select which option to transfer. Most of the time, any incorrect transfer can
e detected by the doctor due to the lack of coherence with the discourse of the interaction. Likewise, Farsi-speaking
atients can also repeat or repair, verbally or through gestures, when they have detected any incorrect transfer, without
ontrolling the GUI of the system. Note that an experienced doctor, in the case of receiving information that does not
atch the discourse, can proceed with error control by rejecting the solution provided by the system and requesting

dditional information.

.1. Internal components of Transonics

The internal process of the Transonics system involves several components. Fig. 2 shows a simplified block diagram
f Transonics with its components. The user’s spoken utterance is converted into text form by an automatic speech
ecognizer (ASR) in the appropriate language of the speaker (English for the doctor and Farsi for the patient in this case
tudy), a process which is inherently lossy, i.e., often the transcript may not accurately represent what the user said.
his loss can be due to deletion, insertion, or substitution of spoken words. The output of ASR is further processed by

wo parallel mechanisms: one by a phrase-based statistical machine translation (MT) module that translates the text
rom one language to another, and the other by a statistical classifier which attempts to categorize the utterance into
ne of several predetermined (canonical) concept categories. At this stage the text is mapped from the source language
e.g., English) to the target language (e.g., Farsi). The dialog management (DM) module is the center of mediating
essages between the modules and interacts with the MT/classifier, the GUI, and the TTS to deliver the information

rom one interlocutor to the other.
Fig. 3 graphically shows the details of the system’s functional operation and defines the symbols for subsequent

larity. As described above, the MT step operates in two modes: The phrase-based translation (often called statistical

achine translation—SMT) and the concept based translation (concept classification—CCMT). The English speaker

ees the various options on the screen after the MT step. We always show one option (E1) that can be transferred
hrough the SMT path and up to 4 options (E2–E5) that can be transferred through the CCMT path. The CCMT path
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Fig. 3. The internal procedure of generating speech translation candidates implemented in the Transonics system. A doctor uses a two-modality
interface (push-to-talk) and sees up to five candidates onscreen: one machine translation (MT) candidate (E1), and up to 4 classifier candidates
(E2–E5).

has the advantage that it provides a highly accurate back translation since the concepts known by the CCMT were
previously manually translated. Thus options E2–E5 will be transferred very accurately in the target language, while
option E1 will undergo some further lossy channels.

Detailed descriptions of the symbols in Fig. 3 are as follows: U is the original user input; A is the ASR belief
(A � U); E1 = A is the text that will be translated through the SMT and generate (lossy operation) F1 (F1 � E1 � U);
and E2–E5 is the text already translated and mapped back (“non-lossy”, human mapping) into English through CCMT
(U � A � Fi = Ei, ∀ i = {2, 3, 4, 5}).

2.2. Multimodal interface of Transonics

Multimodal interfaces are considered to be flexible and accommodating to large user differences (Oviatt et al.,
2004) and to support richer interactions for the familiar users. In this regard, the interface of Transonics was designed
multimodally to fulfill the requirement of quality translation accommodating diverse users.

The push-to-talk interface of Transonics consists of two input modalities, speech and mouse, to work in conjunction
with speech output and GUI, as shown in Fig. 1. After voice input, users are able to make choices given a list of
available options through the GUI and are best able to select an appropriate option using the mouse (or touch). Fig. 3
symbolizes this description. U is the input user speech and Ei where i ∈ {1, 2, 3, 4, 5} and “None of Above” are the
items of a list available to users to select.

3. Data collection

3.1. Experiment setup

The study is to present analysis results of cross-lingual conversations, mediated by the Transonics system, between
English-speakers playing the role of doctors and Farsi-speakers playing the role of patients. Furthermore, since this
data collection was performed over several interaction sessions with the same users, it allows us to investigate the
learning effect of users and varying user behaviors across sessions during experiments. Note that human adaptation to
the mediation device is regarded in a sense that the mediation system directly interacts with humans using the form of
visual and audio representation.

For the purpose of study, we designed experiments conducted over 4 weeks with four English–Farsi interlocutor
pairs. The age range of the participants was from 20 to 30 years, and they were graduate and undergraduate students at
USC. A 1-h training session was given to all participants before the actual experiments. Details of the training session

included how to do the experiments with the given scenarios when using Transonics. In this 1-h training session, 30 min
were devoted to interactive instruction. The next half hour was a verbal explanation of the experiments. No special
explicit training for the usage of the speech interface was, however, given to the participants in this training session.
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Fig. 4. Simplified example reference documents of the role-play experiment for doctor-role English speakers and patient-role Farsi speakers. On
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he left, a sample diagnosis reference for doctor-role participants is illustrated, in which six diseases (in the columns) are presented with several
ymptoms (in the rows). On the right, a patient card indicating common cold with a few symptoms is presented, which is written in Farsi for
atient-role participants.

In actual clinical encounters, it is difficult to collect conversation data between English-speaking doctors and Farsi-
peaking patients using an experimental technology system. Hence, to collect representative doctor–patient interactions
ith minimal domain error but sufficiently realistic domain language usage, a role-play experiment was designed with
ative speakers of American English playing the doctors’ roles and Farsi speakers as patients1. Such a role-play approach
s widely used in medical education and training notably with the so-called standardized patient approach and in speech
echnology evaluation (Walker et al., 2002; Belvin et al., 2004; Barrows, 1987). Each role was prepared with reference
ocuments to be used during the interaction. In particular, the doctors had three documents for each experiment session,
amely a diagnosis reference, a disease treatment reference, and a medical term dictionary. The diagnosis reference is
table of 12 diseases (common cold, flu, food poisoning, lactose intolerance, depression, insomnia, hypertension, high
holesterol, liver cancer, lung cancer, SARS, and diabetes) by 30 symptoms. The 30 symptoms vary depending on the
isease. We developed the diagnosis references in a realistic fashion by using information from MedicineNet (2006).
he other two documents are a disease treatment reference and a medical term dictionary: The former includes detailed

reatments for each disease, with which doctors can provide treatments to patients at the end of diagnosis sessions.
he latter is a document of disease/symptom definitions that are helpful for both doctor and patient participants in
nderstanding difficult medical terms. The patients, on the other hand, have access to only two documents: a medical
erm dictionary and a symptom card with four symptoms written in Farsi. Different sessions employ different diagnosis
eferences (for doctors) and symptom cards (for patients). An example diagnosis reference for a doctor and a symptom
ard for a patient are shown in Fig. 4.

.2. Experiment procedure and data collection

Each English-speaking doctor and Farsi-speaking patient pair conducted eight different conversation sessions during
weeks, performing two sessions per week. Two sessions were carried out on the same day with a 20-min break time
etween sessions. In total, there were 30 min per session, 10 min for oral interview, for a total of 1 h and 40 min per
ay. Throughout the whole study each pair handled eight different scenarios across these eight interactions. In each
ession, the doctors attempted to identify the patients’ diseases. Neither party had any information on the nature of
he information the other had. All four pairs of subjects followed the same sequence of scenarios: common cold, liver

ancer, food poisoning, SARS, hypertension, lung cancer, insomnia, and depression. Another assumption was that
he difficulty level of the scenario is constant due to the open-ended questions and the common medical knowledge
sed in the design of topics. This assumption helps reduce deviation from the normalized results. All participants

1 For simplicity the doctor-role English speakers will be referred to as doctors and the patient-role Farsi speakers as patients in the rest of the
aper.
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Fig. 5. A snapshot of a diagnosis session using Transonics. A doctor-role native English speaker (right) controls the device for the session and
performs a diagnosis with a patient-role Farsi speaker (left), based on the given documents for a specific scenario.

provided comments after each session regarding the difficulty level of the topic, but there was no topic that the
participants identified as “most difficult” among the eight scenarios. The experimental scenarios allow for significant
freedom of interaction but provide a guideline that minimizes unknown factors, such as participant domain knowledge
discrepancy, while the experimental setting was kept consistent throughout the study. All participants used headsets
and were instructed only to interact through the device to ensure information was only being transferred through the
device. In this particular setting of audio masking effect, the participants only hear translated audio voice through the
device. For minimal interruption, the experimenter left the room during the experiment and notified the participants
when the interaction time limit was reached.

Fig. 5 shows a snapshot of a diagnosis session where an English speaker (right) is interacting with a Farsi speaker
(left). Each session is mostly a question–answer conversation based on the given documents for one of eight scenarios.
Although the English speaker actively controls the Transonics system (due to the nature of the chosen scenario), the
other speaker (of Farsi language) was observed to sometimes take initiative in conversation by gesture or speech. For
the data analysis, not only were logs of the experiment sessions collected, but oral interviews were performed with
each pair for 10 min before and after each session to collect pre- and post-session surveys. Demographic and general
questions were answered by participants before the collections started. Each session was video-recorded so we could
later observe and analyze the interactions that unfolded during the experiment.

3.3. Data collected for analysis

For the study, we analyzed conversation and user opinion data collected from different sources, including user
interviews, surveys, and the log data. This data collection was designed in such a way as to minimize variability of
experimental conditions by keeping the system, experimental location, and experimental settings constant. Details of
the procedure and the type of data collection are as follows:

1. A 10-min user interview with the two participants was conducted by the experimenter right after each session. The
same person administered all 32 interview sessions. Questions were general and open-ended, such as “How do you
feel about the session you just finished?”, and interviewers did not guide the participants in any response, allowing
the interviewees to freely express their opinion. The most often discussed topics were system performance, personal
concerns during the experiment, and suggestions for an updated system design;

2. There are three types of surveys collected: first, a one-time survey given to participants before the whole experiment;
second, a survey given before each session so each participant completed out this four times in total; third, a

survey given after each session (completed four times in total by each participant). The first one-time demographic
survey included assessment of users’ general technology proficiency, demographic information, and experience with
multimodal interfaces. The second pre-session survey included questions regarding that particular day’s feelings,
speech interface experiences, and any changes in personal experience compared to the previous session. This
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Table 1
Table shows a simplified portion of the data log acquired automatically by running the Transonics system. There are system routing tags (FADT,
FDMT, FMDT, FDGT, FDGC, and FGDT—F: flow; A: audio server; D: dialog management; M: machine translation; G: graphical user interface;
T: text; C: control) indicating the data flow from/to on the left side and the data being processed on the right side. Actual data are in the content
column. Additional information logged, not shown for simplicity, includes time stamps, utterance sequence, confidence, and class numbers.

System routing tag Content

FADT YOU HAVE OTHER MEDICAL PROBLEMS |
DO YOU HAVE OTHER MEDICAL PROBLEMS

FDMT YOU HAVE OTHER MEDICAL PROBLEMS

FMDT SmA mSkl pzSky dygry dAryd |
YOU HAVE OTHER MEDICAL PROBLEMS

FDGT YOU HAVE OTHER MEDICAL PROBLEMS
FDMT DO YOU HAVE OTHER MEDICAL PROBLEMS

FMDT VyA hyC mSkl pzSky dAryd |
DO YOU HAVE ANY MEDICAL PROBLEMS

FDGT DO YOU HAVE ANY MEDICAL PROBLEMS
F
F

3

3
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DGC ShownAllOptions
GDT Choice*1

pre-session survey was designed for the measurement of any changes with regard to the user and his/her experience
of the speech interface. The last post-session survey included questions about user satisfaction, perception of the
overall system performance, difficulty level of topic or using the system, and any open suggestions. This post-
session survey was designed to target gathering of user opinions about any improvements in or decrements of user
satisfaction while participating in the experiment and using the system.

. The Transonics system is also equipped with a logging mechanism, so all the spoken conversations of the experiment
are logged in the text and audio format. In this regard, all 32 sessions’ logs were collected. These logs contain not
only principal user actions and system status information during the session but confidence levels of the machine-
produced utterances, user selected items, recognized hypotheses of the ASR component, translated hypotheses of
the translation components (from both the statistical machine translator, SMT, and the concept classifier machine
translator, CCMT), audio-recorded user voices, and synthesized system voices in text. Table 1 shows sample log
data. The system routing tag represents the information flows from the source module to the target module; for
example, ‘FADT’ indicates that the data went from the audio server to the dialog management module in text form.
In the content column, the processed data are presented, which come with the system routing tag.

.4. Transcription and annotation of logs

Among the three types of data collected from the experiment, the log data contain diverse information in text form
nd can be automatically processed. The log data were analyzed twice: first, we examined explicit information in
he log data, such as user behaviors (accept and retry) and the machine-produced utterances (speech recognition and
ranslation); second, we annotated the log data with scores that indicate how many concepts are transferred successfully
rom the original user utterance to the targeted machine-produced utterance. The annotated logs became the main source
or the subsequent analysis in this study.

.4.1. Concept matching score
As introduced in Larson (1997), meaning can be the most important metric in evaluating speech translation results.

n reality, we do not expect perfect word-to-word literal translations. Instead, we check the translation results to see if
nough meaning is transferred from the original to the target. Inspired by this idea, we devised a metric called “concept

atching score (CMS)” to assess the transferred meaning through the Transonics system. The idea of the CMS was

orrowed from the Linguistic Data Consortium’s human assessment metrics (Ma and Cieri, 2006). In particular, Ma
nd Cieri (2006) mention: “Adequacy refers to the degree to which the translation communicates information present
n the original or in the best of breed translation that serves as a proxy to the original.” In the study, we assign CMS to



562 J. Shin et al. / Computer Speech and Language 27 (2013) 554–571

utterances based on the number of concepts in the utterances—how many concepts are transferred from the original
utterances (source) to the target utterances (destination), either through translation or within the same language, e.g.,
through a lossy speech recognition channel.

The CMS scores were manually assigned by humans to all the pairs of same-path utterances in the log data, such
as (A, U), (E1, U), (E1, A), (F1, E1), (F1, A), (F1, U), (E2, U), (E2, A), etc., as depicted in Fig. 3.

Measuring correct meaning in utterances requires linguistic skills which can be found only in native and culturally
aware speakers. To assign CMS scores to the utterances of the log data, we hired 4 bilingual annotators fluent in both
English and Farsi. The total number of investigated utterances – from English and Farsi speakers – was 2435, and
two annotators took charge of transcription of utterances and the other two in assigning scores to utterances. To make
the data manipulation objective and consistent, 2 h of training and calibration sessions were given to each of the 4
bilingual speakers, in which they were provided with verbal instructions and a few samples of transcription and CMS
assignment. The CMS score is assigned pair-wise to utterances based on the following guidelines:

Guideline for the concept matching score assignment

1.0 All concepts are transferred.
0.8 Most concepts are transferred.
0.6 Many concepts are transferred.
0.4 Some concepts are transferred, such that users may sometimes understand the whole meaning.
0.2 Few concepts are transferred, such that users will rarely understand the whole meaning.
0.0 None of the concepts are transferred.

3.4.2. Reliability of the concept matching score assignment
One way of verifying how well the CMS was assigned to an utterance or identifying any critical bias in the assigned

CMS is to measure the percentage of agreement between the two CMS annotators. To measure this agreement between
the two, we acquired two sets of CMS assigned to all the pairs of the same-path utterances. The total number of the
common processed entries by each was 6353. For the purpose of this testing, the agreement percentage was measured
by Kappa Coefficient, and the value of Kappa was 0.52. This Kappa value indicates moderate strength of agreement
according to the common interpretation of Kappa Statistics.

4. Results and discussion

In this section we present results based on the analysis of the interviews, surveys, and annotated logs. We incorporated
a qualitative and quantitative data analysis investigating various dimensions. The qualitative methodologies include
analysis of the videos, audio logs, and in-person user interviews. The quantitative methodologies include a number of
statistical tests on the log data and analysis of the post-session surveys. Particularly the statistical tests include analysis
of user behaviors and system actions. The log data used for the statistical tests contains user actions, user utterances,
and machine-produced utterances that were logged during conversations through the Transonics system, as well as the
annotations (e.g., CMS and human translations). We employed the statistical analysis toolkit SPSS 15.0.

4.1. Qualitative data analysis

4.1.1. User interview
The participants in the experiments, after each session, had an opportunity to verbally provide not only comments

on the conducted conversation but also on the performance or usability of the system and the speech interface. This
user interview session took about 10 min.

According to the comments in the interview sessions, the participants had managed to conduct conversations
successfully in most of the cases. However, their minor opinions implied they had spent a substantial amount of time

and effort in handling errors. These errors include speech recognition errors, translation errors, and dialog errors. And
these errors eventually caused incorrect concept deliveries from one participant to another. To overcome any errors in
the conversation the participants utilized a few strategies, such as repeat, rephrase, change topic, and start over, and
believed that they had effectively handled the error situations using these strategies. Some quantitative analysis results
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Table 2
Summary of overall statistics from the survey data of doctor-role English speakers that were collected after each interaction session finished: user
satisfaction, user perceived difficulty when using the interface, user adaptation to using the system, and user-perceived system performance. The
two sets of numbers are mean and standard deviation.

User satisfaction (1: very unsatisfied; 7: very satisfied) 4.6 (0.9)
Difficulty in using the interface (1: difficult to use; 7: easy to use) 5.4 (1.2)
User adaption to using the system (1: difficult to adapt; 7: easy to adapt) 5.3 (1.3)
Overall system performance (1: no concepts delivered; 7: all concepts delivered) 4.4 (0.7)

Table 3
Perceived user performance during the 4 weeks of the experiment, in terms of using and learning the functionality of the Transonics system. The
range of performance level given to the participants is (1: “very bad”; 7: “very good”). The two sets of numbers are mean and standard deviation.
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erceived user performance 4.25 (0.96) 4.75 (0.96) 5.25 (1.2) 5.0 (0.8)

bout the strategies in error conditions are presented in our previous work (Shin et al., 2002) in which user log data of
spoken dialog system were analyzed and a conditional probability model smoothed by weighted ASR error rate was
roposed.

One interesting observation from the interview sessions is user adaptation to errors over time. The participants
eported that they became more comfortable dealing with any type of errors as they experienced more conversations
sing the system. Especially, most of the participants commented that their adapted strategies in the last session (week
) were effective in dealing with errors. The user-adapted strategies are analyzed using the log data and presented in
he later section.

.2. Quantitative data analysis

The surveys and system logs – and their subsequent annotation – provide rich data for detailed quantitative analysis.

.2.1. Surveys
Analysis of surveys gives us more insightful results about the user and his/her experience during the experiment.

n the study, we collected data using three different types of surveys as introduced in Section 3.3: first, the collection
f general knowledge about participants; second, the status of participants before each experiment session; third, user
xperiences and opinions about the conducted session and the system they used. In the following results section, only
elevant analysis results on the selected questions are summarized.

Technology background: The analysis of the demographic surveys provides variances of user background in the
echnology aspect. According to the collected data, none of the participants had any experience with speech-enabled
ystems before the experiment. The term, “speech-enabled system” represents any computing devices/applications
quipped with speech recognition, such as a speech translation application or a call center spoken dialog system.
ome details about users and backgrounds are the following: the average level of proficiency in general technology (1:
omfortable; 7: never comfortable) was 3.0 (std. 1.4) from four English-speaking participants and 2.5 (std. 1.0) from
our Farsi-speaking participants. The average level of proficiency in dealing with computers (1.0: better than most; 5:
orse than most) was 2.25 (std. 0.95) from the English-speakers and 1.25 (std. 0.5) from the Farsi-speakers.
The analysis of the pre/post-session surveys was performed on the data collected from English-speaking participants.

he asymmetric design of the interface of Transonics prompted focus more on the doctors who control the system
uring the experiments. On the other hand, patients only used the speech interface, which limits information in many
spects, such as effects of the visual modality and dialog options. The analysis of the pre-session surveys – that
ttempted to gauge the status or state of the participants before each session – did not provide any significant evidence

n differences among the participants. The following results in Tables 2 and 3 are from the analysis on the post-session
urveys administered at the end of each session.

Satisfaction: We attempted to measure satisfaction of the users with the overall system and interface. This helps
s to understand and address deficiencies in the system design and implementation. Table 2 summarizes the analysis
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from the post-session surveys; we investigated user perception on overall satisfaction, difficulty in using the system,
adaptation to the system, and overall system performance.

Self-performance: Another interesting question regarded how users perceived their performance over the 4 weeks
of the experiment. We define user performance as the level of proficiency in employing the system. For qualitatively
measuring performance we employed the post-session surveys over the 4 weeks. To minimize the effect of system
performance on users’ self evaluation of their performance, users were instructed to disregard the system errors in their
self-evaluation. Table 3 indicates how the participants perceived their performance over the 4 weeks of experiment,
using the range of (1: “very bad”; 7: “very good”). The figures show that the participants believed they were getting
better in their performance overall, despite a performance drop in the 4th week compared to week 3. With regard to
user performance over time, additional analysis results using quantitative data are presented in the following sections.

4.2.2. Distribution of meaning transfer rate in successful or unsuccessful turns of the annotated system logs
The following analysis results are presented based on the data of the doctor-side interactions as more meaningful

analysis results are expected. The annotated system logs and video data are primary resources for the analysis. The
analysis results of the patient-side interactions would be noted separately.

Statistics of the collected data: The total number of the analyzed English-spoken utterances was 1489 which
includes both the number of collected utterances during the experiment and the English translations from the patient
utterances. Additionally, for the English speaker the average number of utterances per session was 46.5 (std. 16.7); the
average user acceptance rate per session was 0.64 (0.09), representing that users accepted 64% of the machine-processed
utterances during the experiment using the choice mode system; the average number of words per utterance was 5.16
(2.0); and the average concept matching score between a user utterance and a system choice that was accepted 0.84
(0.19), indicating that users accept some degradation (average 16%) as a preferable option to retrying or rephrasing.
On the patient-role Farsi speakers side, the total number of utterances was 946 which includes both the number of Farsi
utterances and the translations of the doctor utterances; the average number of utterances per session was 29.6 (std.
11.8); the average number of words per utterance was 3.34 (2.3); and the average concept matching score between
user utterance and translation was 0.56 (0.39), indicating that on average 56% of the original concepts were transferred
through the system. Note that Farsi speakers’ speech gets automatically translated and they do not have the option of
aborting or choosing or any other access to other modalities; therefore all their speech input will get translated.

Accepted meaning degradation: With the multimodal interface of Transonics, doctor-role English speakers can
accept or reject machine-processed utterances based on their assessment of the speech recognized text and the classifier
proposed classes. We wanted to identify how much degradation users were willing to accept and how this varies across
doctors. Based on our analysis, there is a person-specific accept/reject threshold that can be employed for recommending
feedback in error conditions. We define a turn in which the user accepts one of the system proposed utterances as a
successful turn. Using the concept matching score (CMS) from the annotated logs, we can see in Fig. 6 the distributions
and cumulative sum graphs of meaning transfer (CMS) from the user utterance to the selected machine-proposed option
for both successful and unsuccessful turns. The successful turn is represented as (U, Ei), where i ∈ {1, 2, 3, 4, 5}, and
the unsuccessful as (U, Ei), where i =None of Above, using the symbols introduced in Fig. 3. Note that this represents
the degradation due to the ASR alone and the ASR and concept classifier. The average meaning transfer rate in user
selected successful turns was 0.84 (std. 0.19), which represents 84% correct meaning transfer rate. Unsuccessful turns
on the other hand have a 0.25 (std. 0.21) meaning transfer and make rejection necessary. The same results analyzed
per individual doctor were 0.83 (0.24), 0.86 (0.15), 0.80 (0.2), and 0.87 (0.14) for successful turns and 0.33 (0.25),
0.20 (0.18), 0.29 (0.22), and 0.21 (0.16), respectively, for unsuccessful turns.

Boosted meaning transfer rate with the multimodal interface: Utilizing multiple modalities plays an important
role in the design of an interface for interaction-oriented systems, especially when we incorporate speech as one of the
modalities. For example, it was reported that a multimodal interface enhanced the overall system and user performance
by judiciously adopting multiple modalities, as introduced in the studies (Oviatt et al., 2004; Deng et al., 2004). Thus,
in addition to speech, we incorporated a GUI and a “push-to-talk” modality into our system design. In this section we

investigate the benefits arising from the multimodal nature in terms of improved concept transfer.

Using the annotated data and assigned CMS scores, we compared the CMS of user utterances and the corresponding
translations under three conditions: (1) multimodal interface, with user choice provided by the GUI; (2) multimodal
confirmation interface, with the user confirming the utterance to be translated; (3) unimodal, speech-only interface.
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Fig. 6. (Top left) CMS between user utterance and the corresponding machine-processed utterance which is accepted by user (between U and Ei

where i ∈ {1, 2, 3, 4, 5} as in Fig. 3); (top right) cumulative CMS between user utterance and user accepted machine-processed utterance (successful
turn); (Bottom left) CMS between user utterance and user rejected machine-processed utterance (between U and Ei where i = None of above as in
Fig. 3); (bottom right) cumulative CMS between user utterance and user rejected machine-processed utterance (unsuccessful turn).

Table 4
Concept matching score and its standard deviation between user utterance and the corresponding translation under unimodal and multimodal interface
settings with or without a filtering option.

Concept matching score (CMS) between user utterance and the corresponding translation

No filtering option Binary options Multiple options

Unimodal 0.51 (0.33)
M

i
i
o
m

W
m

t
p
r

ultimodal 0.63 (0.25) 0.67 (0.23)

A multimodal choice interface is the equivalent of the path CMS[U,Fi] (as in Fig. 3) where i ∈ {1, 2, 3, 4, 5} and i
s chosen by the user through the GUI and the user has the choice to reject all options. In the multimodal confirmation
nterface i corresponds to the machine-selected best choice and the doctor can only accept or reject. The third case
f the unimodal interface is the equivalent of the path CMS[U,Fi] where i ∈ {1, 2, 3, 4, 5} and i corresponds to the
achine-selected best choice and no rejection can take place.
Table 4 presents the successfully transferred 51% meaning of the original user utterance by the unimodal interface.

hen other modalities are employed there is a significant 24% relative improvement through the use of the confirmation
ode to a 63% CMS and a further improvement through the choice mode to 67% CMS, a 31% relative improvement.
Longitudinal study of varying user/system performance over time: According to the results of our surveys above,
he participants perceived an increased self-performance over time during the experiment (Table 3). The improved
erformance may be investigated from the system logs, e.g., through the speed of communication, the amount of
etries, etc.
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Fig. 7. The linear trend represents an increasing user acceptance rate during the 4 weeks of the experiment. Each participant performed eight
conversation sessions over 4 weeks (two per week), and the figure depicts the user acceptance rates of 32 sessions collected by four participants.
Each session’s user acceptance rate is represented as a circle. In the experiment, the doctor-role English speakers control the multimodal interface
of Transonics and accept or retry the machine recommendations for translation to communicate with patient-role Farsi speakers.

Table 5
Meaning transfer rate in ASR output and in user-accepted machine-processed utterance. The meaning transfer rate in ASR output is formulated as
CMS (U, A). The meaning transfer rate in the user-accepted machine-processed utterance is formulated as CMS (U, Ei where i ∈ {1, 2, 3, 4, 5}).
The meaning transfer rate in user-accepted machine-processed utterance differs from that in ASR output in a sense that it varies and results in a
significant difference over time according to ANOVA.

Week 1 Week 2 Week 3 Week 4

CMS (U, A) 0.66 (0.31) 0.64 (0.32) 0.68 (0.3) 0.64 (0.37)

CMS (U, Ei) where i ∈ {1, 2, 3, 4, 5} 0.88 (0.19) 0.85 (0.2) 0.84 (0.18) 0.82 (0.2)

We first observed the longitudinal accept/retry behaviors of users from the log data. Fig. 7 shows an increasing
user acceptance rate over time, indicating a trend of increasing user performance. This increasing user performance
expedites effective communication in terms of the communication speed. The user acceptance rate in a session is
defined as the ratio of the number of user-accepted machine-processed utterances options over the total number of user
utterances in the session.

System performance: In the results of Fig. 7, we assumed that the Transonics system is consistent in its performance
because of the static state of its models and the same interface being used during the experiment. Also, before the
experiment, the participants were trained enough to be comfortable with usage of the Transonics system. Therefore,
the initial levels of users’ skills in dealing with the system were normalized for the experiment. In reality, however,
many system performance factors affect user behaviors, for example, varying speech recognition precision. In this
regard, we investigated the system performance and its relation to user accept/retry rates. The factors considered in the
following analysis are ASR recognition errors, meaning transfer rate, and translation quality.

ASR performance: The ASR output represents the front-end system that transforms the audio input format into
text. Based on this text output, the system and/or user perform the error handling and input to the translation module.
Table 5 presents the meaning transfer rate, CMS (U, A), of the ASR over 4 weeks. We can see no significant difference
over time (ANOVA: F = 2.0, p = 0.12) in the CMS of U, the user utterance, and A, the ASR text output.

User’s intended transfer rate: We measured meaning transfer rates, CMS (U, Ei) where i ∈ {1, 2, 3, 4, 5}, based
on user selection i. This metric is in effect what the English user, lacking any understanding of the target language,

believes the concept translated will be, and it does not include all the errors in the translation path. Table 5 presents the
decreasing meaning transfer rate over 4 weeks. The significance (F = 4.17, p < 0.01) has been confirmed by ANOVA.
Further analysis results using a post hoc test with Tukey HSD confirmed that the meaning transfer rate of the first week
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Table 6
Average utterance length and its standard deviation in three conditions: overall, after successful turn, after unsuccessful turn. The utterance length
is defined as the number of words in the utterance.

Overall After successful turn After unsuccessful turn

Average utterance length 5.16 (2.0) 5.26 (2.1) 5.0 (1.9)

Table 7
Percentage of reduced utterance length after unsuccessful turns indicated the trend of learning effect in user strategy. The statistics were measured
from the log data of English speakers who control the multimodal interface of Transonics.

Week 1 Week 2 Week 3 Week 4
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iffers dramatically from that of the last week. The result in the second case prompted a more thorough investigation
f the reason for this CMS reduction as a reduced meaning transfer rate can be counter to the system’s objective. We
nvestigated the actual log data line-by-line to identify the cause of this and concluded that through experience users
ecome accepting of functional words and make faster progress in communication as they use the system more. Note
hat incorrect placement of function words appear to be errors in the aspect of grammar, less likely of semantics. For
nstance functional words can damage the CMS score but have little impact in allowing the patients to reconstruct the
riginal concepts, such as in the example utterance “AND DO YOU HAVE ANY OTHER SYMPTOMS,” in which
he word “AND” is an insertion that lowers the CMS.

Overall transfer rate: The translation result is considered in relation to user behavior. The trend of increasing user
cceptance rate (Fig. 7) and the decreasing CMS (Table 5) in the user-accepted utterances could result in decreased
ranslation quality. In this regard, we investigated the translation quality over 4 weeks: 0.69 (0.22), 0.64 (0.22), 0.66
0,21), and 0.65 (0.24). The ANOVA measure on the translation quality confirms that there is no significant difference
ANOVA: F = 1.3, p = 0.17). The meaning transfer rate in translation was measured between user utterance and the
orresponding translation, formulated as CMS between U and Fi where i ∈ {1, 2, 3, 4, 5}, where i is a user choice.
he constant translation quality over time and the trend of increased user acceptance rate over time together imply that
sers are adapting and training themselves to achieve their goals.

.2.3. User strategy on errors by utilizing utterance length
Utterance length: The participants in the experiment who used the multimodal interface of Transonics demonstrated

ffective strategies, especially when dealing with errors. Users reduced the length of their utterances and rephrased the
reviously failed utterance to get back on track from the error situations. The application of this user strategy became
ore apparent when there was a chain of consecutive errors. In contrast they attempted to speak longer sentences using

he multimodal interface when they faced a normal flow of conversation. Table 6 shows the overall statistics about
English) utterance length measured after user accept/retry behavior during the experiment. The utterance length is
easured in number of words. Table 6 indicates that the users spoke relatively longer utterances after successful turns

nd spoke in shorter utterances after unsuccessful turns, in which users retry (5.0 words in average).
Longitudinal utterance length variation: This user strategy contributed to lowering the overall error rate; however,

he amount of information exchanged may be lowered too. The figures of Table 6 suggest patterns of user behavior
ndicating that users seek equilibrium in their behaviors during 32 conversation sessions by modifying the length of
heir utterances. According to the user interview data and the audio/video data, doctor-role English speakers utilized
he utterance length judiciously to achieve the ultimate goal – the correct diagnosis – of each experiment session within
he 30 min.

They dramatically reduced the utterance length when they faced a difficulty in dealing with errors; however, once
hey got a short utterance recognized by the system, users spoke the same length or the longer sentence. From the log

ata, we observed that users spoke at least at their average length or longer after a successful turn at 62%, 62%, 67%,
nd 68% of the time over the 4 weeks, respectively.

Another important aspect considered in the study is learning effects. Over time, the users exhibited a behavior
f utilizing shorter utterances as an effective strategy to overcome errors, although in general otherwise they employ
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Table 8
Average utterance length and its standard deviation collected from the offline log data of 32 interaction sessions conducted over 4 weeks by four
English (E) and four Farsi (F) speakers.

E/F user 1 E/F user 2 E/F user 3 E/F user 4

English speaker 4.1 (1.6) 5.7 (2.3) 5.6 (2.0) 4.6 (1.2)
Farsi speaker 3.0 (1.8) 4.4 (2.3) 3.7 (2.3) 1.7 (1.3)
longer utterances. Table 7 shows the percentage of reduced utterance length after unsuccessful turns during the 4 weeks
of the experiment. It provides a trend of temporal learning of user strategy. Note that users used the strategy of reducing
the utterance length more during the last 2 weeks compared to the first 2 weeks.

5. Discussion

The purpose of this study was to identify and analyze metrics that can affect S2S system performance and user
experience and guide future developments. A well-designed speech-to-speech translation system needs to deal with
different user behaviors according to the appropriate models and the interaction goals.

We observed explicit user differences in their overall utterance length from the collected data of the study, in which
four English and four Farsi speakers converse using the multimodal interface of Transonics. ANOVA measure confirms
that there is a significant difference in the utterance length of participants: F = 48.7, p < 0.01 (English speakers), and
F = 90.7, p < 0.01 (Farsi speaker). Table 8 shows the difference of utterance length between participants. English/Farsi
speaker 1 and English/Farsi 4 had shorter utterances compared to English/Farsi 2 and English/Farsi 3. Surprisingly, the
conversation partners seem to have the same tendency of managing utterance length, synced by each other. For example,
English- and Farsi-speaking partners with user numbers 2 and 3 have longer utterance lengths overall, compared to
English and Farsi partners with user numbers 1 and 4.

One of the hypotheses in the study was that translation quality improves as users become more familiar with the
system. However, the study showed that there was no significant improvement or degradation in the translation quality
in terms of meaning transfer rate over time. This can be due to the combination of different user behaviors which vary
over time and the responses of the system to the varying user behaviors. For example, the quality of translation gets
improved when users speak shorter utterances, but it is degraded by increased acceptance of functional words. Also,
the system modules, such as acoustic or language models, have been kept static throughout the study; therefore, we
expect statistically consistent system performance. This points to a need for dynamically adapting the system to the
user, so the system can better cope with changing user behaviors, and improving the underlying machine models. For
example, a well-designed speech-to-speech translation system would provide more information when users shorten
the length of speech in error conditions (refer to the result of Section 4.2.3).

Another discussion point in the study is the possible bias in the assignment of concept matching score (CMS).
Concept matching score is a subjective metric assigned by humans, although we used 4 bilingual annotators to
cross-validate the two sets, and we trained and attempted to standardize the process. We prepared the annotators
extensively, and we gave many standardization examples and also averaged the CMS scores between the two sets
for the analysis for the statistically large pool of data. Future work can include more unbiased concept matching
scores.

6. Conclusion

In this study, we designed a scenario-based experiment performed over a period of 4 weeks by English speakers
playing the role of doctors and Farsi speakers playing the role of patients. The experiment participants conversed with
each other to achieve the goal of the designed conversation task. Not only quantitative log data of the system and

surveys were collected but qualitative data, such as audio/video recordings of the interactions and user interviews,
were also gathered. The diverse source of collected data provided us opportunities to investigate various aspects of
user behaviors and system functions. Analysis results using both quantitative and qualitative data were reported in the
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tudy; notably, the log data collected over 4 weeks contributed to the quantitative analysis in the longitudinal study
f user behaviors. Qualitative data, such as from user interviews, furnished ideas for the design of this longitudinal
tudy. The analysis results provide details of user/system performance, how users react to errors, and how well users
tilize and learn the multimodal interface of Transonics over time. The analysis of user interviews brought up the issue
f effective user strategies coping with errors, such as repeat, rephrase, change topic, and start over. Further analysis
evealed a learning effect during the 4 weeks of the experiment, in which users got comfortable in dealing with errors
s they made more use the multimodal interface of the Transonics system.

The analysis of quantitative data provided more concrete support for the conclusions about varying user beha-
iors, system performance factors, and the combinations of both. Meaning transfer rate is an important metric
or the measurement of the system components’ quality, which is useful for improving the design of the overall
peech-to-speech translation system. In this regard, a novel measure, the Concept Matching Score, was devised
n the study. Concept matching scores were assigned by human evaluators based on the number of concepts in
he utterances, i.e., how many concepts are transferred from the original utterances (source) to the target utte-
ances (destination). Four bilingual speakers assigned scores to all the available utterances, and the scores were
ross-validated.

The survey data analysis provided basic statistics about user backgrounds; in particular, participants’ level of
roficiency/knowledge about technology was above average, but none of the participants had experience with speech-
nabled interfaces before the experiment. Based on the survey results, we expected that the training sessions for all
he participants standardized the participants’ handling of the multimodal interface. Another aspect of analysis from
he surveys was about participants’ experiences during the 4 weeks of the experiment. They reported above average
ser satisfaction and system performance, easier use of the multimodal interface, and easier adaptation to using the
ransonics system as well as an increasing rate in user-perceived performance.

The first finding of this analysis provided statistics regarding how much meaning is transferred in successful and
nsuccessful turns when users use a multimodal interface. This result indicates a threshold of user acceptable or
nacceptable system performance for successful or unsuccessful turns, in terms of meaning transfer rate. Average
eaning transfer rate in successful turns was 84% and in unsuccessful turns was 25%. In addition, 91% of successful

urns resulted in more than 50% meaning transfer, and 90% of unsuccessful turns resulted in less than 50%, an
bservation that suggests that the users are very effective in their filtering of bad options through the ASR output.

The second finding was about the benefit of incorporating a multimodal interface into the design of a speech-to-
peech translation system. It was reported that the meaning transfer rate acquired through a multimodal interface setting
s higher in comparison with the meaning transfer rate acquired through a unimodal speech-only interface setting. A
4% relative improvement was reported by adding just a visual cue to the speech only interface, and a 31% relative
mprovement was observed by adding up to 5 visual cues to the speech only interface.

The next finding was about varying user strategies and system performance factors over time. This result plays an
mportant role in the design of a speech-to-speech translation system because some dynamic adaptation can be applied
o the conventional static design of the system, utilizing the information of varying user behaviors. It turned out in
ur study that users showed a trend toward an increasing rate of acceptance over the 4 weeks of the experiment. The
nderlying components, ASR, translation modules, etc., were kept constant and performed consistently in terms of
oth their metrics (WER, BLEU) and the meaning transfer rate, but users gradually increased the average number
f accept behaviors in relation to rejections. This resulted in a lowering of the meaning transfer rate over time. We
onjecture that users got accustomed to the usage of the system so they tried to make the conversations smoother and
aster by ignoring some functional words that do not affect the final translation quality. Another study could investigate
onger term usage and identify whether the users reach some more appropriate balance of acceptance/rejection as their
earning improves.

Lastly, user utterance length was analyzed in two cases: after successful turns and after unsuccessful turns. Results
how that users relatively increase their utterance length more after a successful turn, compared to that after an
nsuccessful turn. The result of the learning effect with regard to the two cases indicated a trend toward an increased
sage of this strategy by the users (reducing utterance length after an unsuccessful turn) as their familiarity with the

ystem increased. The user utterance length plays an important role in the design of a speech-to-speech translation
ystem because longer utterance lengths mean the delivery of more information but also higher probability of statistical
rocessing errors and vice versa in the case of the shorter utterance. A better design of a speech-to-speech translation
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system would take advantage of utilizing the length of user utterance judiciously, which can result in the optimal
delivery of information for cross-language communication.
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