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ABSTRACT

Psycholinguistic normatives represent various affective and mental
constructs using numeric scores and are used in a variety of appli-
cations in natural language processing. They are commonly used
at the sentence level, the scores of which are estimated by extrapo-
lating word level scores using simple aggregation strategies, which
may not always be optimal. In this work, we present a novel ap-
proach to estimate the psycholinguistic norms at sentence level. We
apply a multidimensional annotation fusion model on annotations at
the word level to estimate a parameter which captures relationships
between different norms. We then use this parameter at sentence
level to estimate the norms. We evaluate our approach by predicting
sentence level scores for various normative dimensions and compare
with standard word aggregation schemes.
Index Terms: Psycholinguistic normatives, Annotation fusion, Mul-
tidimensional annotations.

1. INTRODUCTION

Psycholinguistic norms are numeric ratings assigned to linguistic
cues such as words or sentences to measure various psychological
constructs. Examples include dimensions such as valence, arousal,
and dominance which are used to analyze the affective state of the
author (of the spoken or written text), along with norms of higher
order mental constructs such as concreteness and imagability which
have been associated with improvements in learning [1]. The ease
of computing the norms has enabled their application in a variety
of tasks in natural language processing such as information retrieval
[2], sentiment analysis [3], text based personality prediction [4] and
opinion mining. The norms are typically annotated at the word level
by psychologists who provide numeric scores to a curated list of
seed words, which are then extrapolated to a larger vocabulary using
either semantic relationships such as synonymy and hyponymy or
using word occurrence based contextual similarity [5].

Most applications of psycholinguistic norms in NLP use sen-
tence or document level scores, but manual annotation of the norms
at these levels is difficult and not straightforward to generalize. In
these cases, estimation of sentence level norms is done by aggregat-
ing the word level scores using simple averaging [6, 5], or by using
distribution statistics of the word level scores [7]. However, such
strategies do not account for the non-trivial dependencies of sentence
level semantics on the words, and may not be accurate at estimating
the norms at the sentence level. In this work, we propose a new ap-
proach to estimate sentence level norms using inferred relationships
between different dimensions along with partial annotations of the
sentence level norms.

Annotation of the normatives at the sentence level is a challeng-
ing task when compared to word level annotations since it involves
evaluating the underlying semantics of the sentence in the abstract

space of the corresponding dimension, with some dimensions in par-
ticular being more difficult than others. For example, imagability, a
measure of how easy it is to create a mental image of the input word
or sentence, is more difficult to annotate at the sentence level when
compared to words. On the other hand, norms such as valence are
relatively easier to annotate even at the sentence level in compari-
son. We use this observation along with the parameters learned from
a joint annotation fusion model at word level to predict norms at
sentence level.

Annotations are typically performed online using crowdsourc-
ing platforms such as Amazon Mechanical Turk1 (Mturk), which
connect researchers with inexpensive workers from across the globe
and provide easy scalability. Annotations are collected from sev-
eral workers over a large number of instances, often on several re-
lated dimensions. These are then combined to obtain estimates for
the label of interest, typically using aggregation techniques such as
simple averaging or majority voting, or using more nuanced aggre-
gation models which assume a structure for the annotators’ behavior
[8]. The annotation dimensions are usually modeled independent of
each other, but a few recent publications have explored joint model-
ing of the dimensions and have highlighted the benefits of this ap-
proach [9, 10]. These models assume a joint relationship between
the dimensions being annotated, and estimate model parameters that
capture this relationship for each annotator, which can be used in
estimating the sentence level normatives. Specifically, we can use
model parameters learned at the word level to estimate the norms at
the sentence level using partial sentence level annotations.

We use the model presented in [10], in which the authors assume
a matrix factorization model to capture the annotators’ behavior, in
which the annotations are assumed to be based on a linear trans-
formation of the underlying label vector. Parameters of this model
include a linear transformation matrix, Fk, which captures the in-
dividual contributions of each dimension in the annotation output.
In our work, we assume that the annotator specific relationships be-
tween the dimensions captured by the parameter Fk is comparable at
both word and sentence levels. We collect word level annotations on
valence, arousal and dominance and train the joint global annotation
model from [10] to estimate the annotator parameters including Fk;
we then use the word level estimates for Fk on sentence level ratings
from the same set of annotators. To predict sentence level scores of
a given normative dimension, we make use of partial annotations on
the remaining dimensions along with Fk. Our proposed approach
shows improved performance in predicting the sentence level norms
when compared to various word level aggregation strategies.

The rest of the paper is organized as follows. In Section 2, we
expand on the joint multidimensional annotation model and detail
our data annotation approach in Section 3, followed by experiments
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Fig. 1. Proposed model. xm is the set of features for the mth data
point, am,d

∗ is the latent label for the dth dimension and am,d
k is the

rating provided by the kth annotator. Vectors xm and am
k (shaded)

are observed variables, while am
∗ is latent. Am is the set of annotator

ratings for the mth instance.

in Section 4 and results in Section 5 before concluding in Section 6.

2. JOINT MULTIDIMENSIONAL ANNOTATION MODEL

The annotation model is represented in plate notation in Figure 1.
In this model, the underlying label vector am

∗ for each data instance
is defined as a linear regression model as shown in Equation 1. An
annotator, indexed by k, is assumed to apply a linear transformation
function on vector am

∗ to produce the annotation vector am
k using the

matrix Fk as shown in Equation 2.

am
∗ = ΘT xm + εm (1)

am
k = Fkam

∗ + ηk (2)

where, xm ∈ IRP; Θ ∈ IRP×D; εm ∼ N(0, σ2I); σ2 ∈ IR; ηk ∼
N(0, τ2k I); τ2k ∈ IR. Fk ∈ IRD×D is the annotator specific linear
transformation matrix. Each annotation dimension value am,d

k for
annotator k is defined as a weighted average of the vector am

∗ with
weights given by Fk(d, :).

In this model, the feature vector xm corresponding to each in-
stance is assumed to be available, along with the annotations am

k ,
while the label vectors am

∗ are assumed hidden, as shown in the Fig-
ure 1. We use the EM algorithm from [10] to estimate the parame-
ters, listed below for ease of exposition. Detailed derivations for the
update equations below can be found in [10].

We use Maximum Likelihood Estimation (MLE) to estimate
the model parameters, in which we maximize the model likelihood
shown below in Equation 3.

logL =

M∑
m=1

log p(am
1 . . . am

K ; Φ)

=

M∑
m=1

log

∫
am∗

p(am
1 . . . am

K |am
∗ ;Fk, τ

2
k )p(am

∗ ; Θ, σ2) dam
∗

(3)

Optimizing the above objective is non-trivial due to the presence
of the integral within the log function. To address this, we use the
well known Expectation Maximization algorithm [11], which uses

Jensen’s inequality to derive a lower bound (shown below in Equa-
tion 4) on the objective based on current parameter estimates, by
computing the expectation with respect to the conditional distribu-
tion p(am

∗ |am
1 . . . am

K).

logL =

M∑
m=1

Eam∗ |am1 ...am
K

[
log

p(am
1 . . . am

K |am
∗ )p(am

∗ )

q(am
∗ )

]
(4)

This is followed by parameter estimation using maximization.
The alternating expectation and maximization steps form the itera-
tions of the EM algorithm.

2.1. EM algorithm

Initialization The model is initialized by assigning the mean of an-
notations for each data instance as the estimate for am

∗ . Given this,
the initial parameters are estimated using update equations listed in
the maximization step below.

E-step We compute the expected value of am
∗ with respect to

the distribution p(am
∗ |am

1 . . . am
K), which is assumed to be it’s soft

estimate for each data instance.

Eam∗ |am1 ...am
K

[am
∗ ] = ΘT xm + Σam∗ ,am1 ...am

K
Σ−1

am1 ...am
K

,am1 ...am
K

(am − µm)

Σam∗ |am1 ...am
K

[am
∗ ] = Σam∗ ,am∗ − Σam∗ ,am1 ...am

K
Σ−1

am1 ...am
K

,am1 ...am
K

Σam1 ...am
K

,am∗

M-step Given the soft estimate for am
∗ , parameter estimates are

computed by maximizing Equation 4. The update equations for this
step are listed below.

Θ = (XT X)−1(XT E[am∗ ])

Fk =

( Mk∑
m=1

am
K E[(am

∗ )T ]

)( Mk∑
m=1

E[am
∗ (am

∗ )T ]

)−1

σ2 =
1

md

M∑
m=1

(
E[(am

∗ )T am
∗ ]− 2tr

(
Θ′T xm E[(am

∗ )T ]
)

+tr(xT
mΘ′Θ′T xm)

)
τ2k =

1

mkd

Mk∑
m=1

(
(am

K)T am
K − 2tr

(
F ′Tk am

K E[(am
∗ )T ]

)
+tr

(
F ′Tk F ′k E[am

∗ (am
∗ )T ]

))
Termination We terminate the algorithm when the change in

model log-likelihood reduces to less than 0.001% from the previous
iteration.

3. DATA ANNOTATION

We performed two sets of experiments, collecting word and sentence
level annotations on specific dimensions in each. In the first exper-
iment (which we refer to as VAD from now), we collected anno-
tations on the affective norms of Valence, Arousal and Dominance
using Mturk for words sampled from [12]. This corpus was chosen
because it provides expert ratings on Valence, Arousal and Domi-
nance for nearly 14,000 English words. Annotators were asked to
provide numeric ratings between 1 to 5 (inclusive) for each dimen-
sion, on assignments consisting of a set of 20 words. In total, we
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Fig. 2. Performance of proposed and baseline models in predicting sentence level norms. Results show Concordance Correlation Coefficient
(CCC) and Pearson Correlation values between the various estimates and the reference expert ratings on the EmoBank corpus. The estimates
of the proposed model for Valence and Arousal are superior while those for Dominance are poor; subsequent analysis show poor human
interannotator agreement for dominance ratings as a possible reason. See also Figure 3.

collected 20 annotations each on a set of 200 words randomly sam-
pled from [12]. Instructions for the annotation assignments included
definitions along with examples for each of the dimensions being
annotated. After filtering incomplete and noisy submissions, we re-
tained only those annotators who provided ratings for at least 100
words in the subsequent sentence level annotation task, to ensure
sufficient training data.

Sentence level annotations were collected on sentences from the
Emobank corpus [13], which includes expert ratings on valence,
arousal and dominance for 10000 English sentences. 21 different
annotators from the word level annotation task described above were
invited to provide labels for 100 sentences randomly sampled from
this corpus. The assignments were presented in a similar fashion as
word level annotations, with each assignment including 10 sentences
and the workers providing numeric ratings for valence, arousal and
dominance for each sentence. We use the annotator specific param-
eters Fk estimated at the word level to predict the norms at sentence
level using the approach described in the next section.

In our second experiment (which we refer to as IGP from now),
we collected word and sentence level annotations on three new psy-
cholinguistic normative dimensions: imagability, which measures
the degree of the stimulus’ proclivity to create a mental picture; gen-
derladenness, which measures the degree of masculine or feminine
association evoked by the stimulus; and pleasantness, which mea-
sures the degree of pleasant feelings associated with the stimulus.
We used the same words and sentences used in our previous experi-
ment for annotations on valence, arousal and dominance. Since we
do not have expert ratings for pleasantness, imagability and gender-
ladenness, we use the strategy followed in AVEC 2018 challenge to
evaluate model performance.

4. EXPERIMENTS

Given annotator parameters Fk estimated at the word level, we use
partial annotator ratings at the sentence level to predict the remain-
ing norms. For example, in the VAD experiment, while predicting
sentence level scores of valence, we use the sentence level annotator
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Fig. 3. Performance of the best annotators for each dimension (but
over all instances) in our dataset and annotator average when com-
pared with expert ratings from the Emobank corpus

ratings on arousal and dominance along with the word level parame-
ter matrix Fword

k . The use of partial annotations enables us to predict
sentence level norms on challenging psycholinguistic dimensions us-
ing ratings on dimensions which maybe easier to annotate.


·

am,d′

1

...
am,d′

K

·

 =


·

Fword
1 [d′, :]

...
Fword
K [d′, :]
·


am
∗

 (5)

where, d′ ∈ {1 . . . D}; d′ 6= d is the dimension to predict. am
∗ is

estimated using linear regression.
In both our experiments, we make use of the IID Gaussian noise

assumption in Equation 2, which reduces the task of predicting the
sentence level norm to a linear regression problem shown in Equa-
tion 5. Rows of the matrix Fword

k are treated as features of the re-
gression model with vector am

∗ as the regression parameter. Given
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Fig. 4. MSE of predicted and baseline models in predicting Imagability, Genderladenness and Pleasantness

sentence level partial annotations am,\d
k (vector amk with am,d

k re-
moved), and matrix Fword

k , the regression parameter vector am
∗ can

be estimated using normal equations or gradient descent. For each
dimension within a given experiment, we use Equation 5 to esti-
mate the sentence level normatives. The features xm used in both
our experiments were 300 dimensional GloVe embeddings [14] at
word level, which were aggregated using simple averaging at sen-
tence level.

In the VAD experiment, we compare the predicted dimensions
with expert ratings from the Emobank corpus, which acts as our ref-
erence to evaluate model performance. For baselines, we compute
different aggregations of word level normative scores after filtering
out non-content words as is common in literature [6]. Word level
scores for the norms were computed using the approach described in
[5]. We used unweighted average, maximum, minimum and sum of
the word level norms as the baseline aggregation functions.

In the IGP experiment, we train linear regression models using
predictions from the proposed model and directly compare the train-
ing set error with baselines. Low training error implies higher learn-
ability (due to better correlations with the features) of the predicted
signal and serves as a crude proxy for quality. For baselines, we use
training error from labels obtained by simple averaging of word level
normative scores, and sentence level average of annotations.

We use Concordance Correlation Coefficient (ρc) [15] and the
Pearson’s correlation coefficient (ρ) as evaluation metrics. ρc mea-
sures any departures from the concordance line (line passing through
the origin at 45° angle). Hence it is sensitive to rotations or rescal-
ing in the predicted values of am

∗ . Given two samples x and y, the
sample concordance coefficient ρ̂c is defined as shown below.

ρ̂c =
2sxy

s2x + s2y + (x̄− ȳ)2
(6)

where sx and sy are sample standard deviations, while sxy is the
sample covariance.

5. RESULTS
5.1. VAD

Figure 2 shows the performance of the proposed model along with
the different baselines. As seen from the figure, the proposed model
outperforms the baselines in predicting valence and arousal in both
evaluation metrics, suggesting the efficacy of the approach. Using
partial ratings at sentence level along with matrix Fk which captures
relationships between the dimensions, the proposed approach seems

to outperform the baseline word aggregation schemes in these two
dimensions. Performance in ρc appears to be lower than ρ, sug-
gesting the presence of a rotation in the predicted values. This can
be attributed to the unidentifiability commonly observed in matrix
factorization models such as the annotation fusion model of [10].
Common solutions to address this involve assuming a suitable prior
on the parameter Fk, which may lead to better estimates of ρc.

Model performance on dominance, on the other hand, is consid-
erably low in both metrics. To further investigate the reason for this,
we examined the performance of the best possible annotator for each
dimension in this experiment and compare their predictions with the
expert ratings from the Emobank corpus in Figure 3. Evidently, for
dominance, we notice very low correlation and high MSE between
our best annotators and the experts, suggesting a high disagreement
for this dimension. This may have been due to a possibly differing
definition and/or interpretation of dominance between the two sets
of annotators.

5.2. IGP

In our second experiment, we use model training error as a proxy
for evaluating prediction quality since we do not have expert rat-
ings. Figure 4 shows the training error for the proposed model when
compared with two baselines. The proposed model shows lowest
training error in predicting imagability while the performance is rel-
atively worse in genderladenness and pleasantness, suggesting rela-
tively stronger dependency of imagability on the other dimensions.

6. CONCLUSION

We presented a novel computational approach to estimate sentence
level psycholinguistic norms using joint multidimensional annota-
tion fusion. We evaluate our approach by predicting sentence level
normatives on various dimensions in two different experiments, and
showed improvements in specific cases. Future work includes eval-
uating the model on more abstract psycholinguistic dimensions such
as concreteness and dominance. The primary challenge there lies
in obtaining expert ratings on these dimensions at the sentence level
to evaluate the model predictions. Recently, alternate schemes to
evaluate a model in the absence of a reliable ground truth or ref-
erence have been proposed, such as the evaluation strategy used in
the AVEC 2018 challenge [16]. The challenge organizers proposed
a scheme where annotation fusion models are evaluated by training
regression models on labels predicted by the fusion models which
are evaluated on a disjoint test set.
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