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Abstract—Identification of the acoustic environment from an
audio recording, also known as acoustic scene classification, is
an active area of research. In this paper, we study dynamically-
changing background acoustic scenes from the egocentric per-
spective of an individual in a workplace. In a novel data
collection setup, wearable sensors were deployed on individuals to
collect audio signals within a built environment, while Bluetooth-
based hubs continuously tracked the individual’s location which
represents the acoustic scene at a certain time. The data of this
paper come from 170 hospital workers gathered continuously
during work shifts for a 10 week period. In the first part of
our study, we investigate temporal patterns in the egocentric
sequence of acoustic scenes encountered by an employee, and
the association of those patterns with factors such as job-role
and daily routine of the individual. Motivated by evidence of
multifaceted effects of ambient sounds on human psychology,
we also analyze the association of the temporal dynamics of
the perceived acoustic scenes with particular behavioral traits
of the individual. Experiments reveal rich temporal patterns
in the acoustic scenes experienced by the individuals during
their work shifts, and a strong association of those patterns
with various constructs related to job-roles and behavior of the
employees. In the second part of our study, we employ deep
learning models to predict the temporal sequence of acoustic
scenes from the egocentric audio signal. We propose a two-stage
framework where a recurrent neural network is trained on top
of the latent acoustic representations learned by a segment-level
neural network. The experimental results show the efficacy of
the proposed system in predicting sequence of acoustic scenes,
highlighting the existence of underlying temporal patterns in the
acoustic scenes experienced in workplace.

Index Terms—Egocentric audio recordings, workplace acoustic
scenes, time-delay neural network, gated recurrent unit.

I. INTRODUCTION

THE human auditory system experiences a multitude of
sounds, often dynamically changing over space and time,

from its ambient environment. These experiences are influ-
enced by the nature of an individual’s daily routine, life style
and, notably, occupation. For example, a highway maintenance
worker might experience traffic noise throughout the day,
while a nurse in a hospital might deal with mostly human
speech and equipment noises. Different sounds tend to show
diverse effects on human health. For example, nature sounds
are found to be beneficial for supporting recovery from a
psychological stressor [1]. On the other hand, certain ambient
noises tend to have detrimental effects on both physiological
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and psychological well-being; from immediate change in heart
rate variability [2] to disturbed sleep patterns [3]. Researchers
have also explored the connection between environmental
sounds and elicitation of positive and negative emotional
reactions [4]. Increased levels of anxiety and depression have
been observed in people from diverse age groups due to
annoyance caused by undesirable sounds [5]. Office or work-
place sounds and noises are found to cause annoyance [6],
[7] and decreased concentration [8] depending on subjective
noise sensitivity [6], which might eventually result in lower
performance and productivity [9], [10], [11].

Technological advances in wearable devices [12], [13] with
the capability of capturing multimodal [14] body signals
offer a unique opportunity to study the relationship between
the ambient acoustic environment and our everyday life and
behavioral patterns. An egocentric analysis (that is centered on
and evolves around an individual) is particularly interesting
since it could illuminate auditory experiences directly from
the perspective of the user wearing the mobile device. Au-
tomated characterization of the sounds and categorization of
the dynamic acoustic scenes experienced by the individuals
using the wearable devices is an essential step into studying
the aforementioned relationship. Following the terminology
of [15], [16], we define an “acoustic scene” (e.g., home, office,
park etc. ) as a unique acoustic environment that is generally
composed of some specific constituent “sound events” (e.g.,
door closing, human speech, phone ringing, music system,
keyboard, birds chirping etc. ). Although recent progress
in deep neural network (DNN)-based approaches facilitate
accurate detection and classification of sound events [17], [18],
[19], [20], [21] and acoustic scenes [15], [16], [22], they do
not address applications based on real-world egocentric audio
recordings collected through off-the-shelf wearable devices,
especially in the scenario when environmental sounds are
possibly overlaid with user’s own speech. We term this as
in-talk acoustic scene identification, since it tries to infer the
background acoustic scene when the user’s speech is captured
by the worn mobile device. This can be useful in providing
context-aware user notifications and experiences, and facilitate
environment-aware decision making. Furthermore, to the best
of our knowledge, past research has mostly focused on catego-
rizing the underlying acoustic scene given an audio recording,
and little work has attempted to model the temporally evolving
acoustic scenes that a particular individual experiences through
the course of their daily life.

In this paper, we focus our study on in-talk acoustic environ-
ments experienced by employees in a workplace; specifically
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of nurses and other clinical providers in a critical care hospital.
Every employee in the workplace experiences a variety of,
and potential patterns within, acoustic scenes during the work
hours day to day. The acoustic scenes under investigation lie
inside a larger set of a workplace (hospital) acoustics, and thus
represent audio locales with unique acoustic characteristics. In
contrast to the commonly used manual acoustic scene annota-
tion schemes [17], [23], we deploy Bluetooth-based acoustic
scene tracking devices [24]. We hypothesize the existence of
possible temporal patterns in the sequence of acoustic scenes
that an individual experiences in a workplace (in this case hos-
pital), from amongst a finite number of acoustic scenes (will
be discussed in Section II). The temporal patterns could be
associated with, or driven by, the daily routine, demographics,
job-roles, and work habits of the person. Motivated by the
psychology literature presented above, we also hypothesize
that the pattern and duration of exposure to a specific set of
acoustic scenes might be correlated with certain behavioral
states and traits of the employees. Finally, in the case of
existence of temporal patterns, we investigate whether we can
capture them by employing a machine learning model.

To pursue the above hypotheses, we organize the work into
two parts.

� Egocentric analysis: We define some scalar measures
of the temporal dynamics given a sequence of acoustic
scenes experienced by a certain employee. Then, we per-
form statistical analyses to verify whether the measures of
dynamics are indeed related to some of their underlying
factors like job-roles, daily routines, habits, and demo-
graphic information of the employee. Furthermore, we
perform a correlation study to explore the relationship
of the measures with factors such as job performance.
The results of this egocentric analysis will reveal the
presence of rich temporal patterns in the acoustic scenes
experienced by an employee, and a strong, statistically
significant relationship between those patterns and the
job-roles, habits, and job performance of the employee.

� Prediction: We investigate whether machine learning
models can capture the temporal dynamics of acoustic
scenes, and thus, allow us to predict the sequence of
acoustic scenes from the egocentric audio features col-
lected through the wearable device.

The egocentric analysis presented in this work provides an
initial evidence of the presence of temporal patterns in the
sequence of acoustic scenes, and thus, builds a foundation
for developing machine learning models that can learn those
temporal patterns for the prediction task. Moreover, in Sec-
tion VI-D, we perform the same egocentric analysis with the
model’s prediction (instead of the true scene labels), which
underscores the benefits of employing a machine learning
model with the capability of learning the underlying temporal
dynamics.

For the modeling and prediction task, we propose a
two-stage DNN-based framework. A segment-level model is
trained to map a segment of low-level audio features to
the corresponding acoustic scene label. A recurrent neural
network (RNN) subsequently utilizes the embeddings (or latent

representations)1 from a pre-trained segment-level model, and
learns to map them to a sequence of acoustic scene labels.
This two-stage learning framework helps us to separately
analyze the capability of the in-talk audio features to infer the
background acoustic scenes, and existence of rich temporal
patterns in the sequence of acoustic scenes experienced by
a specific user. It is worth mentioning that if there is no
specific temporal pattern in the sequence of acoustic scenes
experienced by the employees, then the incorporation of the
RNN model would not help improve the performance beyond
the performance of the segment-level model. We will find that
in our setting the RNN model, working on top of the segment-
level embeddings, helps learn the temporal patterns better than
solely employing the segment-level model.

The rest of the paper is organized as follows. Section II
describes the dataset collection procedure. Section III presents
an egocentric analysis by exploring the association between
workplace acoustic scene dynamics experienced by the in-
dividuals, and their relevant behavioral patterns and daily
routines. Section IV proposes the two-stage framework for
predicting sequence of acoustic scenes. Section V provides
the details about the experimental setting, and Section VI
describes the corresponding results. Finally, we provide con-
cluding remarks and possible future directions in Section VII.

II. DATASET

The data are from the TILES (Tracking IndividuaL per-
formancE with Sensor) project, a part of the IARPA MO-
SAIC program2, that aimed assessing the effect of workplace
stressors on employees’ affective traits, behaviors, and job
performance and productivity. As a part of the project, we
deployed wearable sensors to capture multimodal (audio,
physiological, location etc. ) [14] data from nurses and other
clinical providers in a large critical care hospital3. The data
collection from each clinical provider participant lasted over
a duration of 10 weeks; each provider could be in one of
multiple work shifts (e.g., day, night), and each shift spanned
8 to 12 hours. The current study focuses on audio and location
data from a set of 170 participants (47 male and 123 female)4.
More details about the TILES dataset can be found in [26].

Fig. 1 depicts an illustrative schematic of the five
acoustically-relevant locales in the hospital environment con-
sidered in this study: nursing station, patient room, lab,
lounge, and medication room. Multiple instances of these
locales exist in the actual experimental setting distributed
across the hospital. In a hypothetical situation, a nurse might
experience more than one acoustic locale because of higher
mobility in their job, and hence a richer set of acoustic scenes,
while a lab technician might encounter fewer of them in a
certain work shift due to the more static nature of the job.
Moreover, the temporal pattern in which they encounter the

1Throughout the paper, “embedding” indicates the output of a specific
hidden layer of a DNN, similar to the nomenclature used in [18], [19], [25].

2Multimodal Objective Sensing to Assess Individuals with Context (MO-
SAIC): https://www.iarpa.gov/index.php/research-programs/mosaic

3USC Keck Hospital, Los Angeles, CA, USA.
4All the data were collected in accordance with USC’s Health Sciences

Campus Institutional Review Board (IRB) approval (study ID HS-17-00876).
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Fig. 1: An illustrative schematic of the hospital acoustic
scenes: nursing station, patient room, lab, lounge, and med-
ication room. Every scene has its own sources of sound
events, and thus a unique acoustic characteristics. Note that
all the acoustic scenes might have more than one instances
(e.g., multiple patient rooms). A nurse (red) might experience
several acoustic scenes in a certain work shift, while a lab
technician (green) might experience fewer acoustic scenes
due to relatively lesser mobility. Owl is the Bluetooth hub
recording the location context of the user, and they are installed
in different places having different acoustic scenes. Jelly is
the wearable device that captures audio features, and assists
Owl in registering the location of the user. The sequence of
acoustic scenes a user encounters is derived from the location
information captured by multiple Owls. The figure is best
viewed in color.

acoustic scenes might vary from one job-type to another. The
analyses of the acoustic scene characteristics with respect to
job-type, daily routines, and individual behavioral patterns
(Section III) lay the foundation for subsequent automated
prediction (Section IV) of the temporal sequence of acoustic
scenes from audio features.

A. Acoustic features

Acoustic features were collected through a wearable audio
recorder (an audio badge called the “TILES Audio Recorder”)
programmed in-house using a Jelly5 phone device as described
in [12]. Audio recordings were triggered with a custom online
energy-based Voice Activity Detector (VAD). The HIPAA
regulations [27] and the sensitive scenario of the study dictated
us from not storing the raw audio signals. Instead, the audio
badge sampled the audio signal at 16 KHz, and then extracted
(online) several low-level descriptive features from the audio
using the OpenSMILE toolkit [28]. The online feature ex-
traction was performed at 60 ms window length with 10 ms
shift. The feature set [12] includes energy, prosodic features
like pitch, vocal jitter and shimmer, and spectral features like
MFCCs. We use the energy and 13 MFCC features along with
their derivatives (delta and delta-delta) for the current study,

5Jelly phone device from Unihertz [26], [12].

thus creating 42 dimensional feature vectors. The raw audio
signal is discarded after the online feature extraction.

B. Acoustic scene tracking

In similar previous studies acoustic scenes are annotated by
humans after the recording is done [15], [23]. The expensive
and time consuming nature of the manual labeling process
prohibited us from performing human annotations on our data,
especially since our interest was on closely sampled scene
labeling for tracking for the entire duration of a work shift.
Toward this end, we had installed Bluetooth-based transceivers
in all instances of every acoustic scene, the Owl-in-ones (Owl
in short) sensor [24] (see Fig. 1). The Jelly sends Bluetooth
pings that are received by the Owls in terms of Received Signal
Strength Indicator (RSSI) values. The maximum strength of
the RSSI values is determined to register the location, and
hence, the background acoustic scene of the participant at a
certain time instant.

C. Contextual and user demographic measures

As introduced in Section I, we hypothesize that the temporal
patterns of the sequence of acoustic scenes experienced by an
employee might be associated with factors such as job-roles,
habits, daily routines, and demographics of the individual.
Therefore, at the beginning of the TILES study, we collected
self-reported information from volunteer participants about
their demographics and daily routines [26]. This included
information about work shift, hours of work, current position
in the hospital, extra jobs held etc. A detailed list is presented
in Appendix A.

We also hypothesized in Section I that the dynamics of
exposure to various acoustic scenes may also be related to
some of the behavioral traits and characteristics of the em-
ployee. As a part of the study, the participants also completed
a comprehensive self-reported assessment (called here, Initial
Ground Truth Battery (IGTB) assessment) using a variety
of standard psychological instruments to measure multiple
traits and behavioral aspects such as personality, organizational
behavior, executive function, and smoking and drinking habits
[13]. A complete list of the measured IGTB constructs are
provided in Appendix B. More detailed description can be
found in [26].

III. EGOCENTRIC ANALYSIS OF ACOUSTIC SCENE
DYNAMICS

As introduced in Section I, we investigate the presence of
temporal patterns in the acoustic scenes experienced by an
employee in the workplace. In this section, we propose various
scalar measures that capture the temporal variability in the
scene dynamics, and investigate how the underlying temporal
patterns are associated with factors such as job-roles, daily
routines, and demographics of the employees (as introduced
in Section II-C). Moreover, we explore whether some of
those measures are related to employee job-performance and
cognitive ability.

We represent the temporally varying acoustic scenes expe-
rienced by a certain participant by an ordered sequence of
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TABLE I: Abbreviation and description of different measures
of acoustic scene dynamics incorporated in the egocentric
analysis. All of the following measures are computed on a
sequence of acoustic scenes.

Abbreviation Description

std Standard deviation
range Range
iqr Inter-quartile range
change Normalized number of changes
1-gram-x 1-gram count for acoustic scene class ‘x’
2-gram-xy 2-gram count for acoustic scene class pair ‘x’ and ‘y’
entropy Shannon’s entropy measure
tfidf x Term frequency–inverse document frequency for class ‘x’

enumerated scene labels as defined below. [lounge: 1, patient
room: 2, nursing station: 3, medication room: 4, lab: 5]. For
example, in a hypothetical situation, if a participant experi-
ences [nursing station, nursing station, patient room, patient
room, patient room, lab] in order, then we represent the tem-
porally varying sequence of acoustic scenes by [3; 3; 2; 2; 2; 5].
The enumeration is fixed throughout the experiment.

Definition III.1. A sequence of acoustic scenes experienced
by the ith participant is given by

Yi =
h
yi

0; y
i
1; y

i
2; : : : ; y

i
(Ti�1)

i
=
�
yi

t

�Ti�1

t=0
; (1)

where Ti is the length of sequence, and yi
t 2 f1; 2; : : : ; Cg

for C = 5 acoustic scene classes.

Note that Yi might not contain uniformly spaced acoustic
scenes because of our in-talk analysis (in Section IV-A, we
will discuss how in-talk audio segments are extracted), but
they are temporally ordered.

A. Acoustic scene dynamics

We propose a set of measures to capture the dynamics of
a sequence of acoustic scenes, Yi. In general, each measure
quantifies a certain pattern of a sequence of acoustic scenes
for a particular user in terms of a scalar score. TABLE I
summarizes the abbreviations and descriptions of the measures
we employ for the analysis. The abbreviations will be used in
Fig. 2 and Fig. 3. Some of the measures are defined below in
detail.

To quantify the mobility of an employee between different
acoustic scenes we look at the number of changes in Yi.

Definition III.2. The Normalized number of changes is de-
fined as the total number of changes in acoustic scenes
normalized by the length:

�Yi =
1

Ti � 1

Ti�1X
t=1

I (�i[t] 6= 0) ; (2)

where �i[t] = Yi[t] � Yi[t � 1] is the 1st order difference
sequence, and I(�) is an indicator function i.e., I(b) = 1 if b
is True, otherwise I(b) = 0. Higher values of �Yi indicate
higher mobility of the participant between different acoustic
scenes.

The normalized number of changes gives an aggregated
measure of variation in the sequence of acoustic scenes, Yi.
A more fine-grained information about the amount of time
spent in a particular acoustic scene, or frequency of movement
between two different acoustic scenes might reveal important
characteristics of Yi. These can be formally quantified by
n-gram counts which are frequently employed for language
modeling in the natural language processing domain [29]. The
1-gram count quantifies the number occurrences of a particular
acoustic scene class normalized by the sequence length. Higher
values of ‘1-gram-x’ (as abbreviated in TABLE I) indicate the
user spends more time in acoustic scene ‘x’. The 2-gram count
measures the frequency of scene changes from one class to
another, normalized by sequence length. Higher values of ‘2-
gram-xy’ (as abbreviated in TABLE I) indicate that the user
frequently moves from scene ‘x’ to scene ‘y’.

Furthermore, we try to quantify the uncertainty in the
perceived acoustic scenes present in Yi through the “entropy”
measure. Intuitively, Yi for a participant who mostly stays in
the same acoustic scene should have different characteristics
than the Yi experienced by another participant who frequently
moves between different scenes in the workplace.

Definition III.3. The entropy [30] is defined as the average
amount of uncertainty present in the signal. Denoting Y as a
random variable for the observed acoustic scene with possible
outcomes yk 2 f1; 2: : : : ; Cg, each with probability PY (yk),
Shannon’s entropy is defined as6:

H (Y ) = �
X

k

PY (yk) log2 PY (yk) : (3)

Finally, we borrow the “tf-idf” measure from information
retrieval literature [31]. In the current context, intuitively it
denotes how important a particular acoustic scene, c is to a
certain sequence of acoustic scene, Yi in a collection of several
sequences, S.

Definition III.4. The tf-idf for a particular acoustic class, c
can be defined as:

tf-idf
�
c;Yi;S

�
= tf

�
c;Yi

�
� idf (c;S) : (4)

Here, S =
�
Yi
	N

i=1
denotes the collection of all sequences of

acoustic scenes in the dataset containing N participants. The
term frequency tf

�
c;Yi

�
denotes the frequency of occurrence

of acoustic class c in the sequence Yi. The inverse document
frequency idf (c;S) measures how much information the scene
c provides, and penalizes if it occurs frequently in most of the
sequences.

idf (c;S) =
1 +N

1 + df (c)
+ 1; (5)

where df (c) is the number of sequences in which the class c
is present. The final score is l2 normalized.

6Ideally this is valid for i.i.d. observations, which might not be always
satisfied in our dataset.
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Fig. 2: p-values obtained from the Kruskal–Wallis hypothesis tests between scene dynamics (horizontal axis), and individual
daily routines and demographics (vertical axis). The multiple comparison problem is corrected by the Benjamini–Hochberg
procedure. All the indicated p-values are statistically significant, and for the cases when the null hypothesis is rejected. Cases
with p < 0:001 are shown as 0 for clearer visualization. Empty cells denote observations that fail to significantly reject the
null hypothesis as determined by the Benjamini–Hochberg procedure. Please see Section III-B1 and III-B2.

B. Relationship of acoustic scene dynamics with individual
demographic and behavioral constructs

In this part, we report correlation analysis and hypothesis
tests to explore relationships between different measures of
acoustic scene dynamics, and individual demographics and
behavioral constructs.

1) Multiple comparisons: All the tests involve multiple
comparisons [32], [33] i.e., we have multiple variables (e.g.,
several demographic and daily routine variables as shown
in the vertical axis of Fig. 2), and hence, an outcome of a
statistically significant observation (in general low p-value,
i.e., p < � = 0:05) might be purely by chance. As a
correction technique, we incorporate the Benjamini–Hochberg
procedure [34] to control the False Discovery Rate (FDR).
The FDR is defined as the proportion of significant results
or “discoveries” that are actually false positives [32]. In brief,
Benjamini–Hochberg procedure ranks all the test outcomes by
sorting the p-values in increasing order. The maximum p-value
which satisfies p < (i=m)Q is a significant observation, and
all the smaller p-values are also significant. (i=m)Q is known
as the critical value, where i is the assigned rank, and m is
total number of tests, and Q is the chosen FDR.

In the following two experiments, we apply Ben-
jamini–Hochberg procedure with 10% FDR to choose the sta-
tistically significant observations7. For each dynamics measure
(e.g., normalized number of changes or “change” column in
Fig. 2), the Benjamini-Hochberg procedure is performed for
all demographic and daily routine variables (i.e., for all rows
in Fig. 2).

7Please note that, 10% FDR does not mean � = 0:1. Significant p-values
are chosen based on ranking, and the Benjamini-Hochberg critical value,
(i=m)Q [32].

2) Relationship with individual demographics: We attempt
to find the association between the proposed measures of
scene dynamics and underlying factors such as job-roles,
daily routines, habits, and other demographics information.
We hypothesize that different groups of employees (e.g., with
different job-roles) might experience different patterns in their
acoustic scene dynamics. Toward this end, we perform hy-
pothesis test to reveal this relationship. Most of the constructs
for demographics, job-roles, and daily routines introduced in
Section II-C (full list in Appendix A) are categorical in nature.
Therefore, we perform Kruskal–Wallis hypothesis test [35]
between these individual demographics and the measures of
experienced scene dynamics for all the participants. This test
is a non-parametric version of one way ANOVA test. The
null hypothesis assumes that data (here, a particular scene
dynamics, e.g., normalized number of changes or “change”)
from different categories (here, different groups of a particular
demographic, e.g., different job-roles or currentposition
in the hospital) come from the same distribution. A resultant
low p-value casts doubt on the validity of null hypothesis, and
those observations are of particular interest since they denote
all the data samples do not come from the same distribution.
In other words, different groups of participants, with respect to
a certain demographic construct, experience different acoustic
scene dynamics.

Fig. 2 shows the observations which reject the null hy-
pothesis in Kruskal–Wallis test (observations with p < 0:001
are denoted as 0 for clearer visualization). Some notable
observations are summarized below:

� Current occupation (currentposition) in the hospi-
tal has low p-value for most of the measures of acoustic
scene dynamics, which intuitively makes sense since the
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Fig. 3: Spearman’s correlation between scene dynamics (horizontal axis) and individual behavioral constructs (vertical axis).
The multiple comparison problem is corrected by the Benjamini–Hochberg procedure. Empty cells denote zero correlations
or statistically insignificant correlations. All indicated nonzero correlations are statistically significant as determined by the
Benjamini–Hochberg procedure. Please see Section III-B1 and III-B3. Best viewed in color.

job-roles presumably determine the mobility patterns of
the hospital employees.

� Rejections of null hypothesis are also observed for work
shift (shift), hours of work (hours), overtime,
type of commute (commute_type), extra jobs held
(extrajobs), extra hours (extrahours), and student
status (student).

3) Relationship with individual behavioral constructs:
We compute Spearman’s rank correlation between the scene
dynamics measures, and the individual behavioral constructs
(Section II-C, and Appendix B) over all the participants. Fig. 3
shows the statistically significant correlations between IGTB
constructs and the measures of acoustic scene dynamics. Some
notable findings therein are:

� Some job performance related constructs (In-Role Behav-
ior: irb, and Organizational Citizenship Behavior: ocb)
are significantly correlated with a number of the acoustic
dynamics measures.

� Cognitive ability measures (Shipley Abstraction:
shipley_abs and Shipley Vocabulary:
shipley_voc) tend to manifest a similar trend.

� Physical activity related measures (ipaq) also show sig-
nificant correlations with a couple of acoustics dynamics
measures.

� Maximum absolute correlation of +0:33 is observed
between ocb, and 1-gram-2/tfidf 2.

� The only personality construct “aggreableness” (agr)
shows significant correlations with two dynamics mea-
sures.

� Affect-related constructs (pos_af and neg_af) do not

show significant correlations with any of the scene dy-
namics measures.

To summarize, we defined a set of scalar measures that
capture specific temporal patterns in a dynamically varying se-
quence of acoustic scenes experienced by a certain employee.
The rejection of the null hypothesis in the Kruskal–Wallis test
in Section III-B2 shows that those measures are associated
with some of the underlying factors like job-roles and daily
routines. Moreover, the presence of significant correlations in
Section III-B3 indicates the presence of an inherent relation-
ship between the measures and certain behavioral constructs
of the employees, specifically those related to job performance
and cognitive ability. These observations confirm the hypothe-
ses introduced in Section I, and also motivate us to investigate
further the potential of machine learning methods for modeling
the temporal patterns, and inferring the acoustic scene classes
directly from the audio features collected via the wearable
device.

IV. AUTOMATED PREDICTION OF TEMPORALLY VARYING
ACOUSTIC SCENES

As explained in Section I, in contrast to existing acoustic
scene classification works, we deal with long egocentric in-
talk audio recordings to predict the sequence of observed
acoustic scene classes. For this, we propose a two-stage
modeling framework. A segment-level model first processes
the raw acoustic features. The intermediate representations (or
embeddings) learned by the segment-level model are passed
on to a recurrent model to learn the temporal dynamics of the
sequence of acoustic scenes. Fig. 4 shows an overview of the
employed framework.
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Fig. 4: A two-stage modeling framework for identifying sequence of in-talk acoustic scenes. Left: Acoustic feature stream
is masked with the output of the foreground detection model. This keeps the portions of the stream when there is a possible
foreground activity, which are then segmented in windows of fixed length, Ts. Middle: The segment-level TDNN model takes
a segment of length Ts, and learns to predict the corresponding acoustic scene. Right: A GRU model is then trained on top
of the segment-level embeddings for learning the sequence of acoustic scenes.

A. Processing of acoustic features

1) In-talk acoustic scene identification: The acoustic fea-
tures obtained from the TILES audio recorder correspond to
any audio activity that happened near the participant during
the work shift (due to the presence of VAD module, see
Section II-A). As introduced in Section I, in this work we
focus on the problem of in-talk acoustic scene identification,
i.e., classification of the background acoustic scene while
the user (wearing the audio recording device) is presumably
talking. The main difference with the traditional acoustic scene
identification is that the in-talk acoustic signals originating
from ambient sound sources are supposed to be overlaid with
speech coming from the user wearing the microphone (in
Section I, we have discussed several possible applications).
Another distinction comes from the egocentric collection of
audio over a long duration, which opens up opportunities for
encountering dynamically evolving acoustic scenes.

2) Foreground activity detector: The collection of in-talk
acoustic signal requires selecting the portions of the entire
audio recording which correspond to possible speech activity
by the participant wearing the mobile device. We apply a
foreground speaker (i.e., the person wearing the mobile device)
detection model developed in [36] to extract the portions in
the audio recordings when there is a possible speech activity
from the participant. The foreground detection model is trained
on a labeled dataset of meeting speech (see [36] for details),
and the pre-trained model is used in the current work. The
model provides smoothed binary masks that are employed to
extract the foreground speech activity (see the left part of
Fig. 4). The audio features obtained after the masking contain
user’s own speech overlaid on background audio coming from
different sound sources like machine beeps, door slamming,
clock, telephone, and speech from other people. A certain
combination of some of these sound events makes an acoustic

scene to possess unique characteristic. The masked audio
features are segmented in chunks of length Ts, which are
subsequently employed for segment-level modeling.

B. Modeling segment-level acoustic scene

We represent a sequence of all temporally ordered segments
(might not be uniformly spaced) for the ith participant by

X i =
�
Xi

0;X
i
1; : : : ;X

i
Ti�1

�
=
�
Xi

t

�Ti�1

t=0
(6)

where, Xi
t represents a segment of acoustic feature vectors of

length Ts. Note that the corresponding acoustic scene labels
are given by Yi, as defined in (1). The segment-level model
ignores the time information, and treats all the segments in X i

to be independent and identically distributed (i.i.d.). Dropping
the time index, the segment-level model takes Xi at input and
learns to predict the corresponding scene label yi.

We employ a Time-Delay Neural Network (TDNN), cur-
rently popular in automatic speech recognition [37] and
speaker verification [25], for the segment-level modeling.
The middle part of Fig. 4 shows a schematic of the TDNN
model. The TDNN learns a nonlinear mapping or embedding
from the input features: ei = f

�
Xi
�
. The embedding ei

is projected to the final output layer with C = 5 softmax
units emitting posterior probabilities for every acoustic scene
class, P

�
ŷi = cjXi

�
. The model is trained with an acoustic

scene classification objective, and the training is done with
all segments from all the participants in the training set (see
Section V-C for details). Generally, the embedding learned
in this fashion captures the semantic class-level information
(for example, in speaker verification the speaker embeddings
carry speaker characteristics [25], [38], in our case they are the
acoustic scene classes), and thus they could be subsequently
used for temporal modeling.
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C. Modeling temporal sequence of acoustic scenes

The embeddings learned from the segment-level model help
compress a chunk of audio features of length Ts into a fixed
dimensional vector (typically 128 dimensional, see Section V).
But the segment-level model does not exploit the temporal
dependencies available in the data. We hypothesize that the
way a particular participant encounters acoustic scenes during
his/her work shift might possess a certain temporal pattern.
Therefore, a recurrent modeling framework might be more
effective in predicting the sequence of acoustic scenes as
experienced by that participant.

We adopt Gated Recurrent Units (GRU) [39] neural net-
work to map the sequence of segment-level embeddings�
ei

0; e
i
1; : : : ; e

i
L�1

�
into the sequence of acoustic scene labels�

yi
0; y

i
1; : : : ; y

i
L�1

�
(see the right part of Fig. 4). Dropping

participant’s index i for simplicity, and considering et to be
the input at tth time step, the recurrent transformations for a
single layer GRU and the output transformation in this work
can be summarized as (see [39] for details):

Reset: rt = �(Weret + ber + Whrh(t�1) + bhr)

Update: zt = �(Wezet + bez + Whzh(t�1) + bhz)

Candidate: ~ht = tanh(We~het + be~h+

rt � (Wh~hh(t�1) + bh~h))

Hidden: ht = (1� zt) � ~ht + zt � h(t�1)

Output: ot = Wo � relu(ht) + bo

Posterior: ŷt = softmax(ot)

where, �(�) is the sigmoid function, and � is the Hadamard
product operation. For a multi-layer GRU (not shown in Fig. 4
for clarity, but employed in our experiment), the hidden state
ht of a layer becomes the input for the next layer.

V. EXPERIMENTAL SETTING

A. Model parameters

Segment-level models: For the segment-level modeling we
compare the performance of TDNN model with two other
model architectures:

1) Multi-layer perceptron (MLP): It consists of three lay-
ers with hidden dimensions [1024! 1024! 512]. The
embedding dimension is 512. The model has a total of
� 1:6 M trainable parameters. This model is fed with
a concatenated temporal mean and standard deviation
of the Ts seconds segments. The remaining models are
provided with the temporal features.

2) Resnet-18: To investigate the potential of 2D time-
frequency convolutions, we experiment with a Resnet-18
model [40]. Two modifications are made: use of 16� 2
average pooling to comply with the 42 dimensional
features, and having 5 output units for 5 acoustic scene
classes. The embedding dimension is 512. The model
has � 11:1 M parameters.

3) TDNN small: It follows the TDNN architecture of [25],
except the use of fewer CNN filters and lower statistics
dimension. We use 128 filters at every CNN layer, and

5Acoustic 
scene labels 

Acoustic
features

Foreground 
mask

Fig. 5: Mining sequence of acoustic features and scene labels
for temporal modeling and evaluation.

set the statistics and embedding dimensions to 256 and
128, respectively. The model has � 280 k parameters.

4) TDNN big: It has 256 filters at every CNN layer, and the
statistics and embedding dimensions are 512 and 256,
respectively. The model has � 954 k parameters.

Temporal models: We experiment with GRUs of different
size and depth. The grid search for model selection is per-
formed over hidden dimensions of [64; 128; 256], and number
of hidden layers of [1; 2; 3]. The best model is selected from
the validation set performance (see Section V-C).

The following parameters are common for all the above
models (both segment-level and temporal):

� Relu activation between any two hidden layers.
� Softmax activations in the output layer.
� 30% dropout (for GRU, only applicable if it is a multi-

layer GRU).
� Cross entropy loss as the minimization objective. For the

temporal model, this is done over all time steps of the
sequence.

� Adam optimizer with learning rate 0:001, �1 = 0:9, and
�2 = 0:999.

� Mini-batch size of 64.

B. Data subsets

1) Segment-level experiment: For segment-level training
and testing, we mine Ts = 5 seconds continuous seg-
ments from the foreground masked acoustic features (see
Section IV-A). Segments shorter than 5 seconds are ignored,
and segments longer than 5 seconds are chunked with no
overlap. This creates a total of 269; 170 samples. The acoustic
scene class labels are not uniformly distributed: � 43%
samples coming from patient rooms, � 37% from nursing
station, � 11% from lounge, � 5% from lab, and � 4% from
medication rooms.

2) Temporal modeling experiments: For temporal model-
ing, we mine sequences of audio segments from the foreground
masked recordings (Section IV-A) along with the correspond-
ing acoustic scene labels. Fig. 5 shows a schematic for easier
interpretation. At a certain time point, we look behind ds

time units (called the context duration), and accumulate all the
segments (each of length Ts, similar to Section V-B1) which
fall under any possible foreground speech activity region. This
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TABLE II: Details of the sequences mined from audio record-
ings. The sequence lengths are in terms of total number of
constituent audio segments.

Context
duration,

ds

Number of
sequences

mined

Minimum
sequence

length

Mean
sequence

length

Maximum
sequence

length

15 minutes � 15 k 12 28:00 424
30 minutes � 19 k 12 29:79 678

1 hour � 21 k 12 32:97 1209
2 hours � 21 k 12 39:54 1839

TABLE III: Performance of different models in segment-level
acoustic scene classification.

Model Accuracy (%) F1 score McNemar’s test

MLP 54.99 0.53 +
Resnet-18 60.14 0.57 +

TDNN small 63.49 0.62 +
TDNN big 63.62 0.62 �

serves the purpose of obtaining temporal sequence of acoustic
features and scene labels required for the temporal modeling
(Section IV-C). For the next sequence, we move forward
in time by �s time units. This moving window approach
with nonzero �s helps skipping repetitive sequences. In this
work, we set �s to be equivalent to 4 audio segments i.e.,
�s � 4� 5 = 20 seconds.

An ablation study was performed with different values of
context duration, ds: 15 minutes, 30 minutes, 1 hour, and
2 hours. TABLE II provides different statistics of the data
subsets we mine from the audio recordings for the temporal
model training and evaluation. For training and testing, we
incorporate sequences that have at least 12 time steps (i.e., total
duration of all the segments in the sequence is � 5� 12 = 60
seconds)8 in a given context duration. In other words, this
removes all sequences having less than 12 foreground masked
segments. For example, if a 15 minutes time window has only
two 5 seconds segments with foreground speaker activity, it is
ignored in our current analysis.

C. Data splits, cross validation, and model selection

For all the experiments (both segment-level and temporal),
we perform 5-fold cross validation ensuring no participant
overlap between any two folds. This helps mitigating modeling
bias that could arise from speaker-related characteristics. We
randomly create a validation split from the training participants
each time we train. The validation and train splits also have
no overlap of participants. We run the training for 50 epochs
(because the training loss seems to saturate around that point),
and choose the model with the best validation performance.
We repeat the overall experiment 5 times, and report the mean
accuracy for both segment-level and temporal modeling.

VI. RESULTS AND DISCUSSION

First, we present the result for segment-level prediction
(modeling is in Section IV-B). Intuitively, this is equivalent

8Note that the time steps might not be equally spaced, as can be seen in
Fig. 5

to existing approaches that infer an acoustic scene label given
an audio recording (in this case a segment of length Ts = 5
seconds). Next, we present the results for the proposed two-
stage temporal model (modeling is in Section IV-C) for a much
longer context duration, ds (discussed in Section V-B2). The
best performing segment-level model becomes a baseline for
the proposed two-stage temporal framework.

A. Segment-level prediction

TABLE III shows the unweighted classification accuracy
scores and weighted F1 scores in the 5-fold cross validation
experiments for all the models. We report the mean scores
over 5 random repetitions as explained in Section V-C. We
perform McNemar’s test [41] to verify statistical significance
of the results. It is a non-parametric paired hypothesis test to
check whether the difference between the error rates of two
classifiers is statistically significant. In TABLE III, a positive
(+) outcome indicates that the model outperforms the previous
model (1-level higher row in the table), and the difference
between their mis-classification rates is statistically significant.
The model in the first row has been compared with the chance
accuracy which is � 43%. We can see the basic MLP model
is ahead of chance by 12% in classification accuracy. The
Resnet-18 model significantly outperforms the MLP by an
absolute 5:15% in accuracy, and 0:04 in F1 score. Both the
TDNN models significantly outperform the Resnet-18 model
by � 3:4% in accuracy, and 0:05 in F1 score. We hypothesize
that the relatively lower performance of Resnet-18 might be
because of the large number of trainable parameters compared
to the TDNN models, and possible overfitting issues. Both the
TDNN models perform similarly as verified by the negative
(�) outcome in McNemar’s test when we move from TDNN
small to TDNN big model. Therefore, we use segment-level
embeddings extracted from the TDNN small model for the
subsequent temporal analysis due to their lower embedding
dimension (helps to train RNN faster).

B. Temporal sequence prediction

The sequence models are trained with the embeddings
extracted from the segment-level TDNN small model (em-
bedding dimension is 128). TABLE IV shows the unweighted
accuracy scores and weighted F1 scores for the best perform-
ing temporal model and the segment-level model for different
values of context duration. The segment-level model denotes
the already trained TDNN small model (Section VI-A). The
performance of the segment-level model is equivalent to
splitting the entire audio recording into multiple chunks and
inferring the acoustic scene independently for every segment.
Therefore, any performance gain achieved by employing a
temporal RNN model would highlight the existence of an
underlying temporal pattern in the sequence of acoustic scenes
experienced by the employees. We report mean scores over 5
random repetitions of the experiment. The chance accuracy
is � 45% for all values of context duration. As explained
in Section V-B2, for the experiment with sequential acoustic
scene labels, we discarded the short sequences. Interestingly,
we see an increase in the performance of the segment-level
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TABLE IV: Performance of different models in predicting
temporal sequence of acoustic scenes for different context
duration. “Segment-level” denotes the performance of the
TDNN small model aggregated over all 5 second windows (it
does not employ temporal information). “Temporal” denotes
the performance of the two-stage model (TDNN embeddings
+ GRU) which learns and utilizes the temporal pattern.

Context
duration,

ds

Model Accuracy
(%) F1 score McNemar’s

test

15 min Segment-level 80.24 0.79 +
Temporal 83.52 0.83 +

30 min Segment-level 78.06 0.77 +
Temporal 81.24 0.81 +

1 hour Segment-level 76.26 0.75 +
Temporal 79.33 0.79 +

2 hour Segment-level 74.97 0.74 +
Temporal 77.72 0.77 +

model from the performance reported in Section VI-A. This
indicates the inability of the segment-level model in learning
the acoustic scenes for the short isolated segments. This might
be happening because of errors coming from the foreground
detection module (see Section IV-A)9.

In TABLE IV, a positive (+) outcome of the McNemar’s
test indicates that the corresponding model significantly out-
performs the previous model (1-level higher row in the table).
The first row (segment-level model) is compared with chance
accuracy. It is evident that the GRU-based temporal models
significantly outperform the best segment-level model for all
values of context duration in terms of both accuracy and F1
score. We hypothesize that the performance gain arises from
the presence of temporal dependencies between the acoustic
scenes observed by a certain participant. For example, within
a given context duration, a nurse might experience the acoustic
scenes in a specific pattern e.g., (s)he might mostly move
between nursing station and patient room.

TABLE IV shows us another interesting (somewhat intuitive
though) characteristic. The performance of the temporal model
decreases as the context duration increases. This might be
happening because it is harder to find patterns in the data
for longer sequences. The decrease in the performance of
segment-level model might also be a factor, since the segment-
level embeddings are utilized as features in temporal modeling.
An end-to-end temporal modeling might be more helpful in
this situation, and this will be discussed in Section VII.

The results of both segment-level and temporal experiments
show that the DNN models are able to classify the acoustic
scenes with reasonable accuracy from in-talk acoustic features,
representing potentially a mixture of ambient sounds and the
user’s speech. This shows the feasibility of addressing the task
of in-talk ambient acoustic scene classification, as well as the
ability of the DNN models to learn the mapping from the
in-talk acoustic cues.

9But, this untraceable because of the absence of human annotated labels,
and raw audio signal.

C. Sequence visualization

Fig. 6 visualizes 4 different sequences of acoustic scenes
(for 1 hour context duration) along with their predicted ver-
sions at different accuracy levels. A closer inspection reveals
that there are different types of errors made by the temporal
model, including failures at sudden change in the acoustic
scenes (e.g., the second subplot from the top), and failures
at isolated segments (e.g., third subplot from the top). The
errors could arise from either the segment-level embeddings
that are utilized to train the temporal model, or the inability of
the GRU models to learn the temporal dependencies in those
specific situations.

0 500 1000 1500 2000 2500 3000
1

2

Acoustic scene

Accuracy = 88.89 %

0 500 1000 1500 2000 2500 3000 3500
1

2

3

Acoustic scene

Accuracy = 89.42 %

0 500 1000 1500 2000 2500 3000
0

2

4

Acoustic scene

Accuracy = 74.24 %

0 500 1000 1500 2000 2500 3000 3500
Relative time (seconds)
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3

Acoustic scene

Accuracy = 97.54 % True
Predicted

Fig. 6: Visualization of 4 true (red circles, no line) and pre-
dicted (black dots and dotted lines) sequences. The accuracy
value shown in each subplot indicates the prediction accuracy
for that particular sequence.

D. Egocentric analysis with predicted scene sequence

The egocentric analysis presented in Section III was per-
formed with the true sequence of acoustic scenes captured
by the Bluetooth trackers. In Section VI-B, we compared
performances of both the segment-level and the proposed two-
stage temporal model in predicting the sequence of acoustic
scene labels from audio features. Here, we analyze how the
prediction error affects the egocentric analysis if we perform
the analysis with a model’s predictions instead of the true
scene labels. Any prediction error will have a direct effect
on the measures of acoustic scene dynamics that we compute
from a sequence of acoustic scenes (in Section III-A). Table V
shows the Mean Absolute Error (MAE) between the true
measures of scene dynamics, and the predicted ones. The
MAE is averaged over all the participants. Thus, a lower
MAE indicates better performance by the prediction model
since the predicted measures of dynamics are closer to the
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TABLE V: Mean Absolute Error (MAE) between the measures
of temporal dynamics computed with true scene labels and
predicted scene labels.

MAE at different context duration ds

Model 15 mins 30 mins 1 hour 2 hours

Segment-level 0.062 0.063 0.066 0.068
Temporal 0.048 0.050 0.054 0.055

Relative improvement 22.21% 20.57% 17.68% 18.90%

TABLE VI: Total number of constructs with statistically
significant outcome in the egocentric analyses performed with
the predicted scene labels. The number inside the parenthesis
is the number of constructs that are also observed in the same
statistical test with the true labels. The rows with True Labels
are for comparison purpose.

Construct Model #Constructs at different context duration ds

15 mins 30 mins 1 hour 2 hours

Demo-
graphics

True labels 13 (13)
Segment-level 5 (5) 6 (6) 7 (7) 6 (6)

Temporal 8 (7) 9 (8) 12 (10) 10 (9)

Behavior True labels 7(7)
Segment-level 3 (1) 3 (1) 4 (2) 7 (4)

Temporal 5 (3) 7 (4) 13 (5) 8 (2)

true measures. We compare performances of the segment-
level model and the proposed two-stage temporal framework.
It is evident that MAE is smaller for the temporal model than
the segment-level model, which is expected since the former
one has achieved better prediction performance (Table IV).
The higher value of MAE for longer context duration might
possibly be because of higher error in prediction (as can be
seen in Table IV).

To perform the egocentric analysis of Section III with the
predicted acoustic scenes, we do the same statistical tests (to
recap, Kruskal-Wallis for daily routines and demographics,
and Spearman’s correlation for behavioral constructs), but this
time with a model’s predictions. Subsequently, we compare the
outcomes of the statistical tests performed with the true and
the predicted scene labels. TABLE VI shows the total number
of constructs (either demographic or behavioral) that are found
to have a statistically significant relationship with at least one
measure of scene dynamics. The number inside the parenthesis
indicates how many of those constructs also have significant
outcome in the same statistical test performed with the true
labels. We present those values for the segment-level and the
proposed two-stage temporal model. We can see that, in most
of the cases, the predictions from the proposed temporal model
find more constructs (compared to the segment-level model)
that are also observed in the experiment performed with the
true labels. This highlights the efficacy of the proposed two-
stage framework in better predicting the temporal sequence
of acoustic scenes. A comparison between the two types
of construct (demographics and behavior) shows that the
predicted labels are able to get more similar outcome as the
true labels for the demographic variables. More details can be
found in Appendix C.

TABLE VII: Abbreviation, description, and data type of dif-
ferent demographic and daily routine information incorporated
for egocentric analysis.

Abbreviation Description Data type

race Race Categorical (1 � 7)
ethnic Ethnicity Categorical (1 � 2)
relationship Relationship status Categorical (1 � 4)
pregnant Pregnancy status Categorical (1 � 2)
children Number of children below 18

years of age
Integer (0 � 15)

housing Housing status Categorical (1 � 4)
currentposition Current position in the hospital Categorical (1 � 8)
certifications Certifications regarding occu-

pation
Categorical (1 � 7)

nurseyears Years in the current profession Integer (1 � 80)
shift Work shift Categorical (1 � 2)
hours Hours of work per week Integer (1 � 100)
overtime Overtime hours per month Integer (0 � 200)
commute type Means of communicating to

the workplace
Categorical (1 � 6)

commute time Quantized time for communi-
cating to the workplace

Categorical (1 � 6)

extrajob Having at least one extra job Categorical (1 � 2)
extrahours Extra hours spent at extra

job(s) per week
Integer (0 � 100)

student Whether enrolled in a certain
student program

Categorical (1 � 9)

VII. CONCLUSION AND FUTURE DIRECTIONS

We characterized the temporal dynamics of the acoustic
scenes observed in a workplace. Specifically, we studied the
temporally evolving acoustic scenes experienced by nurses and
other clinical providers in a large hospital environment from
egocentric audio recordings collected with wearable micro-
phones. The acoustic scene labels are obtained via Bluetooth
hubs installed in the hospital.

In the first part of our study, we investigated the presence
of underlying temporal patterns in the sequence of acoustic
scenes experienced by a certain individual. To this end, we
characterized the temporal dynamics of the acoustic scenes by
proposing a set of measures that try to capture the variability in
the acoustic scenes experienced by an individual. We showed
that some of those measures are strongly associated with a
number of driving factors including those related to job type,
work hours, and extra jobs. Furthermore, we found the patterns
of exposure to a set of acoustic scenes are correlated with
variables like job performance and cognitive ability.

The second part of the study focused on modeling the
temporal dynamics. We proposed a two-stage deep learn-
ing framework to predict the sequence of acoustic scenes
from egocentric audio features. A TDNN-based segment-level
model was trained to learn the acoustic scenes from short
segments of audio features. The acoustic scene embeddings
extracted from the trained segment-level model were utilized
in the next stage of learning i.e., the GRU-based temporal
model to directly predict the sequence of acoustic scenes.
The extensive experiments and results showed the presence
of rich temporal patterns in acoustic scenes encountered by
the participants. Specifically, the proposed two-stage temporal
model was found to achieve superior performance to the
baseline segment-level model in predicting the sequence of
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TABLE VIII: Abbreviation, description, domain, and data type of different behavioral constructs incorporated for egocentric
analysis.

Abbreviation Description Domain Data type

itp Individual Task Proficiency Job Performance Likert scale (1 � 5)
irb In-Role Behavior Job Performance Likert scale (1 � 7)
iod id Interpersonal and Organizational Deviance Scale /

Interpersonal Deviance
Job Performance Frequency scale (1 � 7)

iod od Interpersonal and Organizational Deviance Scale /
Organizational Deviance

Job Performance Frequency scale (1 � 7)

ocb Organizational Citizenship Behavior Job Performance Integer (0 � 8)

shipley abs Shipley Abstraction Cognitive ability Integer (0 � 25)
shipley voc Shipley Vocabulary Cognitive ability Integer (0 � 40)

neu Neuroticism Personality Likert scale (1 � 5)
con Conscientiousness Personality Likert scale (1 � 5)
ext Extraversion Personality Likert scale (1 � 5)
agr Agreeableness Personality Likert scale (1 � 5)
ope Open-Mindedness Personality Likert scale (1 � 5)

pos af Positive Affect Affect Likert scale (1 � 5)
neg af Negative Affect Affect Likert scale (1 � 5)

stai State-Trait Anxiety Inventory Anxiety Likert scale (1 � 5)

audit Alcohol Use Disorders Identification Test Health � Alcohol use Integer 0 � 40
gats status Global Adult Tobacco Survey � status Health � Tobacco use Categorical (current, past, or never)
gats quantity Global Adult Tobacco Survey � quantity Health � Tobacco use Integer, tobacco units in past week
ipaq International Physical Activity Questionnaire Health � Physical activity Integer, minutes in the past week
psqi Pittsburgh Sleep Quality Index Health � Sleep Float (0 � 21)

acoustic scenes.
In summary, we provided a comprehensive study of dynami-

cally evolving background acoustic scenes from the egocentric
perspective of an employee in a workplace. The egocentric
analysis revealed rich temporal patterns in the perceived acous-
tic scenes, which were also found to be strongly associated
with a number of underlying job-related factors. This built
a foundation for developing machine learning models that
can learn those temporal patterns in order to predict the
sequence of acoustic scenes directly from audio features. The
improvements obtained by employing a temporal model over
the segment-level model, in turn, highlighted the existence of
rich temporal patterns in the egocentric sequence of acoustic
scenes.

There are several future research directions.

� In the online acoustic feature acquisition part, more
distinctive features like log mel energies might be con-
sidered in the future, since they were found to have
superior performance in a variety of sound event detection
tasks [42].

� Future research can be performed on disentangling the
environmental sounds from user’s speech to have better
prediction accuracy. Several novel unsupervised disentan-
glement methods can be found in recent literature [43].

� An extension of the proposed two-stage training frame-
work would be to perform end-to-end training of the
temporal model directly from the raw acoustic features.
An inspection can be done on seamless acoustic scene
detection (no foreground activity detection). The amount
of training data to process would be however a challenge
for that approach, and thus incorporation of efficient data
sub-sampling techniques might be beneficial.

� Real-time implementation of the proposed models, and

analyzing the feasible speed of prediction might be an-
other research problem.

� The efficacy of the temporal prediction model, and the
association between scene dynamics and job charac-
teristics can provide useful insights in devising novel
applications such as frameworks that can automatically
generate movement statistics of the employees between
different workplace acoustic scenes. Moreover, the find-
ings about the correlation between the scene dynamics
and behavioral states of the employees can inspire further
work on building behavioral models [44] that can predict
the behavioral states and traits directly from acoustic data.

APPENDIX A
DEMOGRAPHICS AND DAILY ROUTINES

TABLE VII lists the information about demographics and
daily routines that are used for the analysis. The abbreviations
are utilized in Fig. 2.

APPENDIX B
BEHAVIORAL CONSTRUCTS

TABLE VIII tabulates the MOSAIC Initial Ground Truth
Battery (IGTB) constructs along with their description, do-
main, and data type. The abbreviations are utilized in Fig. 3.

APPENDIX C
DETAILED RESULTS: EGOCENTRIC ANALYSIS WITH THE

SEQUENCE OF PREDICTED SCENES

In Section VI-D we compared the outcomes of the sta-
tistical tests performed on true and predicted scene labels
by considering the presence of a particular construct if at
least one measure of dynamics achieved statistically significant
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(a) ds = 15 mins, Segment-level (b) ds = 15 mins, Temporal

(c) ds = 30 mins, Segment-level (d) ds = 30 mins, Temporal

(e) ds = 1 hour, Segment-level (f) ds = 1 hour, Temporal

(g) ds = 2 hours, Segment-level (h) ds = 2 hours, Temporal

Fig. 7: Word clouds showing outcomes of the egocentric
analysis of daily routine and demographics performed with
model predictions. Predictions of the segment-level model
and the proposed two-stage temporal model are compared
at different context duration, ds. Green: the construct is also
present for true labels, Red: not present for true labels, Word
size: proportional to the total number of measures of dynamics
having significant outcome.

observation. Here, we consider all the measures that show
statistically significant outcome and reflect that count in the
form of word clouds. Figure 7 shows the word clouds for
demographics and daily routines. A green word denotes that
the particular construct also has a significant outcome in the
test performed with true labels, whether a red word indicates
that it does not have a significant outcome in the test with
true labels. A word with larger size denotes that relatively
higher number of measures of scene dynamics give statistically
significant outcome (but it might be green or red as described
above). From Figure 7, we can see that the proposed two-
stage temporal model is able to produce higher number of
outcomes that are similar to the test with true labels, although
it generates some other outcomes as well. Figure 8 shows
similar word clouds for the egocentric analysis with the
behavioral constructs. In most of the cases, the temporal model
still tends to produce more observations that are similar to
those of the true labels (except for ds = 2 hours which is
also evident from the counts presented in TABLE VI). A
comparison between Figure 7 and Figure 8 shows that more

(a) ds = 15 mins, Segment-level (b) ds = 15 mins, Temporal

(c) ds = 30 mins, Segment-level (d) ds = 30 mins, Temporal

(e) ds = 1 hour, Segment-level (f) ds = 1 hour, Temporal

(g) ds = 2 hours, Segment-level (h) ds = 2 hours, Temporal

Fig. 8: Word clouds showing outcomes of the egocentric
analysis of behavioral constructs performed with model predic-
tions. Predictions of the segment-level model and the proposed
two-stage temporal model are compared at different context
duration, ds. Green: the construct is also present for true labels,
Red: not present for true labels, Word size: proportional to
the total number of measures of dynamics having significant
outcome.

similar (with the true test outcomes) observations are found
with demographics than behavioral variables.
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