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Abstract
An articulatory gestural unit representation called 
“articulatory stroke” is introduced. It aims to capture the 
constriction formation and release of a speech articulator such 
as the tongue tip.  In that regard, the articulatory stroke is an 
attempt at a practical realization of the abstract articulatory 
gestures central to Articulatory Phonology. In this study we 
focus on the articulatory strokes associated with the critical 
articulator that is essential to realize a target phone. The 
critical articulatory stroke is parameterized in order to 
investigate the predictability of the parameters from phonetic 
contexts and to check the statistical dependency of acoustic 
changes associated with the critical articulatory strokes. 
Canonical correlation analysis between the articulatory strokes 
and MFCCs showed that the critical articulatory strokes are 
more responsible to the acoustic changes inside target 
phonemes than non-critical articulators. This implies that 
modeling acoustic changes due to critical articulations could 
provide an edge in improving ASR performance. 
Index Terms: articulatory stroke, critical articulation, 
canonical correlation analysis, automatic speech recognition 

1. Introduction
Current automatic speech recognition (ASR) systems are 
based on surface matching between acoustic features and 
phonetic units comprising words in the lexicon. Though they 
perform quite well for read or constrained speech, they suffer 
from swelling acoustic variability such as when speaking style 
becomes spontaneous or casual, and as the number of speakers 
increases. It requires massive, if not endless, training data to 
deal with such as intra- and inter-speaker variability problems.   

Modeling of articulatory movements in the articulatory 
domain has been considered as a promising direction to 
resolve the aforementioned acoustic variability problems [1, 2]. 
Multi-tiered articulatory description of coarticulation has been 
considered more suitable than the conventional segmental 
phonetic representation, especially for spontaneous speech. 
For instance, Articulatory Phonology (AP) [3] argues that 
coarticulation can be described more naturally by combining 
articulatory units called “articulatory gestures,” and that 
syllables or words can be represented by multiple articulatory 
gestures with their relative timings. Furthermore, directly 
capturing the continuous and smooth movements of 
articulators toward their target positions should provide 
reasonable constraints on acoustic changes, which in turn can 
potentially offer additional means for improving ASR 
performance.

Acoustic signals corresponding to the articulatory 
movements were initially used in the landmark based 
approach [4]. Later, a multi-tiered articulatory configuration 
has been explicitly modeled within a DBN framework [5, 6] 
and has shown the capability of effectively representing 

pronunciation variations [6]. The asynchronously-evolving 
acoustic features and articulatory features have also been 
modeled by HMM/BN framework [8]. Automatic detection of 
gestural events has been examined with promising results [16]. 
Switching state space models and linear dynamic models 
(LDM) have been used to take the property of smooth 
movement toward a target position into account, both 
explicitly and implicitly, for decoding speech [9, 10].  

Based on the aforementioned rationale, we investigate an 
articulatory segmental unit called “articulatory stroke” and its 
properties. An articulatory stroke is defined as a turnaround 
motion capturing the approach to, formation of, and release 
from a constriction. The stroke is segmented between two 
successive minimum curvature points. We consider the stroke 
as a practical realization of the articulatory gestures, which are 
the atomic units of speech production in Articulatory 
Phonology (AP) [3] framework. Most previous studies have 
modeled articulatory movements in combinations of discrete 
static states of each articulator, or in continuous states with 
acoustic phonetic units. However, estimating complete 
articulatory positions is challenging. In this work as a first step 
hence we focus on the motions of critical articulators, which 
are fundamental for producing particular sounds and closely 
related to the articulatory gestures. According to the sounds, 
the strokes are asynchronous with the perceived acoustic 
events. For example, the stroke forming a stop consonant 
occurs earlier than the resulting acoustic signature. We 
hypothesize that acoustic changes corresponding to the 
motions of the critical articulators can be more accurately 
captured by setting strokes as the units for ASR.  

In this paper we present the results of quantitative 
articulatory data analyses based on the concept of articulatory 
strokes using the MOCHA-TIMIT database [11]. In Section 2, 
the articulatory stroke is defined in accordance with results of 
velocity-curvature analysis of the articulatory movement, and 
critical strokes are automatically extracted from the estimated 
strokes in reference to acoustic phonetic segmentation and a 
gestural dictionary. In Section 3, predictability of stroke 
parameters by parametric representation of phonetic context is 
examined. In Section 4, statistical dependency of acoustic 
feature change with each articulator motion is compared by 
canonical correlation analysis showing the critical articulator 
has higher correlation than other non-critical articulators.

2. Articulatory Stroke 
2.1. Velocity and curvature analysis of articulatory 
movement
To find a reliable segmental unit of articulatory trajectories 
corroborated by its geometric and kinematic property, we 
investigated the velocity, acceleration and curvature properties 
of each sensor of the MOCHA data where the sensors are 
placed on the tongue tip (TT), tongue body (TB), tongue  
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Figure 1: A trace of log-curvature and log-velocity of 
the tongue tip sensor for an utterance.

dorsum (TD), lower and upper lip (LL&UL), lower and upper 
incisor (LI&UI) and velum (VL). The time series data of 
curvature show sharp peaks, and most of their timings exactly 
match those of local minima of velocity and of local maxima 
of acceleration. This shows that the articulators make quick 
turns and change direction of movement in short time with 
their velocity slowing down.  

It has been known that the velocity and curvature of 
articulators are roughly related by a power function called 
“1/3 power law”, which has been observed in various motions 
within limb and oculomotor systems [12]. The 1/3 power law 
expresses the relation between velocity V(t) and curvature C(t)
in the following equation with velocity gain factor K.

31)()( tKCtV    (1) 
Figure 1 shows an example of traced curvature and 

velocity of the tongue tip sensor for an utterance in a double 
logarithmic chart. The rectangular and circular markers 
indicate local maxima and local minima of curvature 
respectively. The exponent term and velocity gain factor K of 
the 1/3 power law are shown as an instantaneous tilt and a y-
intercept of the traced curve. In making turns, curvature and 
velocity are well ruled by the 1/3 power law with a nearly 
constant K value. Though the articulator exhibits a spatially 
complex trajectory, it is possible to assume the movement is 
composed of alternate turnarounds ruled by the 1/3 power law 
and relatively rectilinear movements with nearly constant 
velocities. All sensors showed the same trend, though the 
curvature and velocity ranged differently. Interestingly, we 
found that these trends were preserved with speech style 
variations [15]. 

2.2. Extraction of critical strokes 
Based on the curvature and velocity analysis, an articulatory 
trajectory was segmented into a sequence of units that we call 
“articulatory strokes”. To capture a sequential motion of an 
articulator representing the approach to, formation of, and 
release from a constriction, a stroke was defined as a motion 
segmented by two successive points of local minimum 
curvature. An articulatory stroke is schematically depicted in 
Figure 2. It is as a turnaround motion where the curvature and 
velocity are ruled by the 1/3 power law with nearly constant K
value. This motion captures the whole process of constriction 
formation: “approach” (onset), “form” and “release” (offset). 
However, the strokes segmented just by points of local 
minimum curvature contain both critical ones, which are 
essential for producing particular sounds, and non-critical ones 
that do not contribute to producing a given sound. As it was 
difficult to distinguish the two only by geometric property  

Figure 2: Definition of an articulatory stroke: capturing the 
approach to, formation of, and release from a constriction. 
It is segmented by two successive minimum curvature points. 

without phonetic information, we referred to acoustically-
obtained phonetic segmentation and the gestural dictionary 
which defines critical articulators for each phone [13].  

The binary separation was processed in the following steps. 
First, strokes whose timing of local maximum curvature is 
within a phonetic segment for which the gestural dictionary 
defines a critical articulation were selected as possible critical 
strokes. The phonetic segments that seek a critical stroke were 
extended back by 20 ms because the strokes sometimes occur 
before the phonetic segments start. Second, strokes whose 
maximum curvature was under a threshold of 10 mm-1 at 500 
Hz sampling rate, strokes whose duration was below 40 ms, 
and strokes whose turning point was more than two sigmas 
apart from the mean turning position (i.e. centroid of the 
turning points) of the phone were eliminated from the possible 
critical strokes estimation. Third, a stroke whose turning point 
was nearest to the mean turning position was selected as the 
critical one if more than two strokes exist in a phonetic 
segment.

2.3. Detection accuracy of critical strokes 
Critical strokes are sometimes not detected in phonetic 
segments where the gestural dictionary assigns a gesture. 
Table 1 shows the rates of detected critical strokes to the 
numbers of phonetic segments. The detection rates were 
around 80% on average for all articulators. Meanwhile, we 
consider that the stroke concept is able to capture assimilation 
of critical articulation. When two successive phones have a 
same constriction location of a same articulator, the skipping 
rates of critical strokes for either of the phones were 68% for 
tongue tip, 84% for tongue body and 90% for lower lip. These 
skipping rates were much higher than the chance level based 
on the average detection rates for the articulators.  

Table 1. Detection rates (%) of critical strokes to the 
numbers of phonetic segments for consonants. 

Tongue
tip

Det.
rate

Tongue
body

Det.
rate

Tongue
dorsum 

Det.
rate

ch 94.9 ch 96.0 g 95.4 
d 75.0 g 83.0 k 92.2 
dh 74.3 jh 88.3 ng 96.4 
jh 91.3 k 85.8 average 93.6 
l 76.8 l 71.9 Low lip  
n 80.0 ng 89.1 b 86.7 
r 59.4 s 89.8 f 84.1 
s 91.3 sh 93.9 m 87.4 

sh 95.2 w 68.2 p 91.2 
t 74.3 y 80.6 r 62.9 
th 86.1 z 82.0 v 69.2 
z 90.5 zh 84.0 w 84.1 
zh 100.0 average 82.7 y 67.0 

average 80.0   average 78.5 
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3. Predictability of stroke parameters from 
contextual parameters 

3.1. Canonical correlation analysis between stroke 
parameters and contextual parameters 
To characterize the strokes by a small number of parameters, a 
stroke was approximated by two piecewise lines. One line 
approximating the approaching part was obtained by least 
squares estimation (LSE) for the data points from the starting 
point of the stroke to the turning point, while the other line 
approximating the releasing part was obtained by LSE for the 
data points from the turning point to the end point. The turning 
point represented by a displacement vector from the mean 
turning position of the phone, approaching and releasing 
direction angles, distances, durations and averaged speeds 
were extracted as stroke parameters. Some of the stroke 
parameters are considered important to distinguish a particular 
sound in a certain context from others. The important 
parameters should have clear dependency with phonetic 
contexts. Otherwise, the parameters are deemed to carry no 
information on the estimation of specific phonetic contexts.

Though the strokes of a same phone can have turning 
points with a large variability, the mean turning position of 
each phone is located exactly at the place of articulation of the 
conventional phonetics in the midsagittal plane. We adopted a 
simple hypothesis that the stroke basically traces two 
piecewise lines, one connecting mean turning positions of the 
left context phone (L) and of the center phone (C), and the 
other connecting mean turning positions of the center phone 
(C) and of the right context phone (R) [14]. Therefore, the left 
and right phonetic contexts were represented by relative 
position vectors of their mean turning positions to that of the 

center phone LC  and CR  in the articulatory plane. The 
angles and distances of the relative position vectors were 
treated as hypothetical direction angles and distances of 
contextual parameters.

We conducted correlation analysis for all combinations of 
the stroke parameters of the critical strokes and the contextual 
parameters. Among them, two combinations of the 
hypothetical approaching angle as a contextual parameter and 
the actual approaching angle as a stroke parameter, and the 
hypothetical releasing angle and the actual releasing angle had 
higher correlation coefficients than others. The correlation 
coefficients of the approach and release were 0.40 and 0.40 for 
tongue tip, 0.23 and 0.29 for tongue body, 0.06 and 0.44 for 
tongue dorsum, 0.23 and 0.25 for upper lip, 0.27 and 0.25 for 
lower lip. In contrast, the hypothetical approaching and 
releasing angles and the actual turning point represented by a 
displacement from the mean turning position of the phone 
were not so correlated, with coefficients less than 0.2.

Figure 3: Distribution of angle error between hypothetical and 
actual direction angles of approach part of tongue tip strokes.

Table 2: Canonical correlation coefficients between 
tongue tip (a critical articulator) motions p and corres-
ponding MFCCs for the approach and release from/to 
the turning points of a consonant /t/ with various t.

/t/ t=10ms t=20ms t=30ms t=40ms 
approach 0.54 0.75 0.77 0.76 
release 0.47 0.57 0.62 0.64 

3.2. Predictability of approaching and releasing 
directions of strokes 
The predictability of approaching and releasing direction 
angles of strokes was evaluated by the angle error between the 
hypothetical and actual approaching (releasing) angles. Figure 
3 shows the distribution of angle error between the 
hypothetical and actual approaching angles of the critical 
strokes of tongue tip. The angle error was below 30 degree for 
60% of the strokes. The accuracy should be improved. In this 
simple prediction, we did not consider whether the mean 
turning positions of the left and right context phones were of 
the critical or dependent or redundant articulators [17]. The 
predictability is expected to be improved by taking the types 
of the articulator into account.

4. Canonical correlation between articula-
tory motion and acoustic feature change 

4.1. Canonical correlation analysis 
Hypothesizing that the articulatory gestures are the atomic 
units of speech perception, acoustic features corresponding to 
articulatory strokes should be observed in the speech signal. 
We hypothesized that the critical articulator is most dynamic 
among all articulators, and that acoustic feature change is most 
correlated with the motion of the critical articulator. As we do 
not know how each articulator’s motion affects the acoustic 
features, we performed canonical correlation analysis between 
motions of articulatory strokes and corresponding MFCCs 
changes with optimized time window for delta features, and 
compared them between articulators. The base acoustic 
features were 12-order MFCCs with 25 ms window and 10 ms 
frame shift.  

4.2. Time window for delta 
Let t, p(t) and t be the instant of turning point of a critical 
articulator, its position (x, y) in the articulatory plane and the 
time window to get deltas, the approaching and releasing 
motions of the critical articulator are defined as follows: 

t
ttptp

tpapp    (2) 

t
tpttp

tprel    (3) 

The acoustic feature changes corresponding to the 
approaching and releasing motions of the critical articulator 
are MFCCs defined in the same way as equations (2) and (3) 
with using MFCC(t) instead of p(t).

The correlation between articulatory motions p and 
MFCCs are expected to be higher with t of the stroke 

duration, which is longer than a 10 ms frame shift, because it 
is less affected by artifacts even if the temporal resolution 
comes down. To find an optimal time window size for delta, 
the correlation coefficients between papp and MFCCapp and 

prel and MFCCrel were compared experimentally across 
various values of t.
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A: Consonants for which tongue tip is the critical art. 

B: Consonants for which tongue dorsum is the critical art. 

C: Consonants for which lips are the critical articulators. 

Figure 4: Correlation coefficients between articulatory 
motions of each articulator and the corresponding MFCCs.

Table 2 shows the correlation coefficients of the consonant 
/t/ by a speaker in MOCHA. The critical articulator was 
specified using the canonical rule mentioned earlier. The 
correlation coefficients reached their maxima at t of 30 ms 
and the maximum values were higher than those of 10 ms case. 

However, t which gives the maximum values is shorter 
than the mean stroke duration. This implies that the critical 
articulator is not dominant for the acoustic change for the 
entire duration from the beginning to the end of a stroke.

4.3. Comparison between articulators 
Figure 4 shows canonical correlation coefficients between p
of each articulator and MFCCs for each consonant. The three 
panels show results for consonants for which tongue tip (panel 
A), tongue dorsum (panel B) and lips (for panel C) are the 
critical articulators respectively. t was set at 30 ms.  
Basically, the correlation coefficient of the critical articulator 
is higher than those of other non-critical articulators as 
expected. Only in panel C, the correlation coefficient of lower 
lip is higher than that of upper lip, because lower lip is 
innately more dynamic than the upper lip. Therefore, the 

critical strokes of approaching and releasing are the dominant 
factor of the corresponding MFCC.

5. Conclusions
Motivated by joint modeling of articulatory and acoustic 
streams, the articulatory trajectories of MOCHA database 
were segmented into units of “articulatory strokes” in an 
articulator dependent fashion. We consider the stroke as an 
implementation of constriction formation by a critical 
articulator. With reference to the available acoustic phonetic 
segmentation and a gestural dictionary, a stroke was detected 
for around 80% of the phonetic segments of the articulator for 
which the gestural dictionary assigns articulatory gestures.  

The actual approaching and releasing directions of the 
strokes were correlated with the hypothetical approaching and 
releasing directions of the lines connecting the mean turning 
positions of the successive phones, left context, center phone 
and right context. The angle error of the prediction was below 
30 degree for 60% of the strokes.

As to statistical dependency of motions of the strokes and 
acoustic feature change, canonical correlation analysis 
between the motions and MFCC showed that the 
approaching and releasing motions of the critical articulator 
were more correlated with corresponding MFCC than other 
non-critical articulators. This result means that the motions of 
the critical articulators are the most dynamic and the dominant 
factor of acoustic feature change. We are currently working on 
automatic detection and meaningful classification of the 
critical strokes with only their geometric property, and on 
improving the stroke parameter predictability using the 
classification of critical, dependent and redundant articulators 
as the second step.
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