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ABSTRACT

Incorporating multimodal information and temporal context from
speakers during an emotional dialog can contribute to improving
performance of automatic emotion recognition systems. Motivated
by these issues, we propose a hierarchical framework which mod-
els emotional evolution within and between emotional utterances,
i.e., at the utterance and dialog level respectively. Our approach
can incorporate a variety of generative or discriminative classifiers
at each level and provides flexibility and extensibility in terms of
multimodal fusion; facial, vocal, head and hand movement cues can
be included and fused according to the modality and the emotion
classification task. Our results using the multimodal, multi-speaker
IEMOCAP database indicate that this framework is well-suited for
cases where emotions are expressed multimodally and in context, as
in many real-life situations.

Index Terms— hierarchical HMM, multimodality, dialog mod-
eling, discriminative training, emotion recognition

1. INTRODUCTION

Automatic emotion recognition is an emerging research area with
various applications, e.g., in the development of educational soft-
ware [1] and in behavioral informatics [2]. The challenges in rec-
ognizing emotional expressions often stem from the fact that emo-
tions are complex dynamic processes that are expressed by multiple
modalities, e.g., via facial expressions and speech prosody, which
may be carrying complementary, or even conflicting information [3].
Moreover, most real-life emotions are expressed in a particular con-
text, which can usually be very informative about the psychological
state of the people involved. Therefore, handling multimodality and
incorporating context awareness in emotion recognition systems are
key issues. This paper proposes a flexible, hierarchical framework
which can both exploit multiple modalities by fusing the correspond-
ing cues appropriately, and also consider temporal context by mod-
eling the emotional evolution in a dialog.

Researchers have recognized the importance of multimodality in
order to obtain a more complete description of the expressed emo-
tion [4]. Recent works have combined vocal, facial and body orien-
tation cues for recognizing emotions [5] or social behaviors such as
approach-avoidance[2]. In addition, taking into account some form
of contextual information, such as temporal emotional evolution [6]
or general conversational context [1], is an emerging topic in the
emotion recognition literature. In [7] authors used speech cues from
the past utterance of a speaker and his interlocutor to inform emotion
recognition of the current utterance, while in our previous work[6],
we modeled the evolution of emotions of a single speaker and ex-

978-1-4673-0046-9/12/$26.00 ©2012 IEEE

2401

ploited this (somewhat constrained) temporal context when classify-
ing the currently expressed emotion.

Building upon this past work, we propose a hierarchical frame-
work that enables modeling emotional dynamics at both the utter-
ance level, i.e., within an emotion, and at the dialog level, i.e., be-
tween the emotions of a speaker or of both speakers that are ex-
pressed during a dyadic conversation. Through this high level mod-
eling we incorporate temporal emotional context information into
our system. The framework is flexible as to the classification ap-
proaches that can be applied to model the affective content of mul-
tiple modalities, such as face, voice, head and hand movement, and
can be extended to include more modalities if they become available.
In this work, we utilize Hidden Markov Model (HMM) classifiers to
model utterance and dialog emotional evolution, therefore our ap-
proach could be seen as a two-level context-sensitive HMM.

As a testbed for evaluating the proposed approach, we use
the Interactive Emotional Dyadic Motion Capture (IEMOCAP)
database which is a multimodal and multispeaker database of im-
provised dyadic interactions [8]. Our experiments are organized in
a dyad-independent manner to simulate real-life scenarios where
no prior knowledge of the specific dyads is available. Our results
indicate that our approach can successfully accomodate a variety
of classifiers and fusion strategies, and can handle cases where a
different amount of multimodal information is available from each
speaker. These results are generally superior to the ones reported in
our previous work for valence and activation classification tasks [6].

2. DATABASE

The IEMOCAP database [8] contains approximately 12 hours of
audio-visual data from five mixed gender pairs of actors. It com-
prises recordings of improvised affective dialogs, where scripts and
hypothetical scenarios were used to elicit emotions that resemble
natural emotion expression and are generated in context. Apart from
speech, the recorded streams include detailed face information, head
and hand movement cues, obtained by a Motion Capture (MoCap)
system for one of the speakers in each dialog. The speakers in each
pair take turns in wearing the markers across the dialogs, so that we
have a similar amount of audio-visual recordings for each speaker.
Audio information is available for both participants in every dialog
through two shotgun microphones directed at each one of them.
Dyadic sessions of approximately five-minute duration were
recorded and were later manually segmented into utterances. Each
utterance was annotated using categorical emotional tags as well as
dimensional ratings of valence and activation by human annotators,
two or three at least per utterance. The dimensional label of an ut-
terance is on a scale from one to five and the final dimensional score
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Fig. 1. An overview of the proposed hierarchical framework.

is the average over the multiple available (two or three) annotator
scores. We perform classification into three levels of valence and
activation: level 1 (emo1) contains ratings in the range [1,2], level
2 (emo2) contains ratings in the range (2,4) and level 3 (emos3)
contains ratings in the range [4,5]. These intuitively correspond to
low, medium, high activation, and to negative, neutral and positive
valence respectively. We focus on the classification of dimensional
labels, which enables us to make use of all the available data, even
of utterances for which there was no categorical inter-annotator
agreement, and thus no categorical label exists.

3. HIERARCHICAL MODELING APPROACH

Our problem can be posed as a two-level one: modeling the se-
quence of audio-visual observations {O;1, Os2, ..., Ot } belonging
to an emotional utterance U; and on top of that modeling the se-
quence of utterances {U1, Us, ..., Ur} belonging to an emotional
conversation C'. We assume that an emotional utterance can be de-
scribed by a single emotional label while an emotional conversation
may contain arbitrary emotional transitions between utterances. Our
proposed approach, illustrated in Fig. 1, can be seen as a two-level
HMM, and shares similarities with the (unimodal) multi-level HMM
proposed in [9]. At the lower level, the system processes multimodal
cues during each of the speaker’s utterances which are modeled us-
ing emotion specific HMMs to capture the dynamics within emo-
tional categories. At the higher level, which represents the temporal
emotional context, the emotional flow between utterances is modeled
by a conversation-level HMM which transitions between emotions.
More specifically, the overall system comprises:

Emotional Utterance Modeling: The system takes as input
audio-visual cues from each speaker during his utterance. Here, we
consider vocal cues for both interlocutors, and for one of the speak-
ers we also consider visual cues: facial expressions, head movement
and hand movement. Emotion-specific, 3-state, fully-connected
HMMs are trained for each modality, using the HTK Toolbox [10].

Modeling of utterance-level score vectors: We estimate the
log-likelihood s;;: = log P(U¢|\s),7 = 1,.., N of every emotion-
specific HMM \; given each utterance. N is the number of emo-
tional categories. We collect these likelihood scores to create an
N-dimensional utterance-level score vector [s;;]~;. The joint dis-
tribution P([s:]]1|emo;) of these scores is then modeled for each
emotional category separately. Two potential models are examined,
namely emotion-specific Gaussian Mixture Models (GMMs) and
multinomial nominal or ordinal regression. The latter can be used

when our classification task is of ordinal nature (e.g., levels of ac-
tivation). The purpose of this joint score modeling step is to also
exploit useful relations that may potentially exist between scores
obtained at the first level. For example, we would like an utterance
that scores high for emo: and low for the other two classes to more
strongly qualify for the class emo; rather than one that has scored
higher for emo1 but also relatively high for other categories as well.
Alternatively, this joint score modeling could be seen as a score
normalization process that takes into account the scores from all
utterance-level emotional models.

Speaker and Dialog emotional modeling: Speaker context can
be included by modeling the evolution of a speaker’s emotional state,
while dialog context is included by modeling the evolution of emo-
tional states in a dialog in a speaker independent manner. Speaker
modeling incorporates temporal context of a speaker based on the
assumption that his emotional state is slowly varying, while dialog
modeling typically incorporates temporal context from both speak-
ers based on the assumption that their emotional states influence each
other. In both cases, context is modeled by a higher-level HMM,
where each state corresponds to a different emotion. This higher-
level HMM can be either first or second order, where each state is
dependent upon the previous one or two states respectively. The tran-
sition probabilities between states are then approximated by bigrams
or trigrams, estimated in the training set. So, in the case of a first-
order higher-level HMM for example, P(emoz|emor) would be es-
timated as the ratio of the training emo- utterances that follow emoq
utterances, divided by the total number of emo; utterances. The
emission probability distribution per state is the joint score condi-
tional distribution for the corresponding emotion, P([s::]X1 |emo;).
In the case of dialog context modeling the second-order HMM al-
lows us to relate the current state with the previous emotions of not
only the current speaker but also the interlocutor. This happens be-
cause in most cases an emotional utterance of a speaker is followed
by an emotional utterance from his interlocutor.

Multimodal Fusion: There is flexibility regarding the choice of
a fusion strategy that can be used for the multimodal cues. Modali-
ties could be fused at the feature level, e.g., by training audio-visual
lower level HMMs or at the model-level by collecting the log-
likelihood scores for each modality, e.g., [P(Us|\i)¥, P(Us| X)X,
to model multimodal score vector discribution (f denotes facial and
v vocal modality). Alternatively, they could be fused at the score-
level by adding the score log-likelihoods with appropriate weights,
¢.g.wy - log P([sh]12L lemo:) + w, - log P([s4]1L; lemoy).
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4. FEATURE EXTRACTION

Facial feature extraction is based on the normalized (x,y,z) coor-
dinates from 46 facial markers [11, 8]. In order to obtain a low-
dimensional representation of the facial marker information, we use
Principal Feature Analysis [12]. This method performs Principal
Component Analysis as a first step and selects features (here marker
coordinates) so as to minimize the correlations between them. We
select 30 features (covering approximately 95% of the total variabil-
ity) and append the first derivatives. For details, please see [11].

The head features consist of the head translation in the (x,y,z)
directions as well as the head angles (yaw, pitch and roll). Transla-
tions are derived from the nose marker and head angles are computed
from all the markers using a technique based on Singular Value De-
composition [8]. The hand features consist of the average (x,y,z)
coordinates of three markers on each hand. For the head and hand
features we include first derivatives in our feature vector. Speech
features are z-normalized 12 MFCC coefficients, pitch, and energy,
together with their first derivatives, extracted using Praat. Audio and
visual features are extracted at 25 Hz, with a 50 ms window.

5. RESULTS AND DISCUSSION

Our experiments are organized in a five-fold leave-one-pair-out cross
validation. The presented recognition results (unweighted F1 mea-
sures) are the pair-independent averages over the five folds. The
number of test utterances per fold is 1954 4 194 on average when
we have audio cues and 988 + 97 when we have audio-visual cues.

5.1. Unimodal Classification and Joint Score Modeling

In this section we present the HMM unimodal recognition results for
discriminating three levels of valence and activation, for facial, vo-
cal, head and hand movement modalities. For the valence task, we
have discriminatively re-trained the emotion-specific HMMs, using
the Minimum Phone Error criterion [10], which led to an improve-
ment in the average F1 measure around 1-2% absolute. Due to class
imbalance for activation, where most of the instances are of medium
activation, discriminative training did not improve performance and
has not been used. We also present the classification results when we
perform joint score distribution modeling on top of the lower-level
HMM classification. We examine two such modeling approaches:
through a GMM and through logistic regression, either nominal for
the valence task, or ordinal for the activation task. The GMMs or re-
gression models have been trained using the likelihood scores in the
trainset, to which we added low random gaussian noise to improve
generalization. The results are presented in Table 1.

We notice that facial cues seem to be more informative for va-
lence, while vocal cues more informative for activation. The head
and hand movement cues generally carry less emotional information,
although they seem informative for activation level discrimination.
Recognition performance based on voice tends to be higher when
the speaker is wearing the markers. Analysis of the microphone sig-
nals suggests that this is possibly an artifact of the database due to
the placement of the microphones. Joint score distribution modeling
generally gives an improvement over low-level HMMs; the GMM
and logistic regression models perform comparably, with ordinal re-
gression being the best performing for the ordinal activation task, but
nominal regression performing lower than the GMM for the valence
task. For the rest of our experiments, due to lack of space, we only
present the results of the GMM method which gives a consistent im-
provement for both classification tasks.

Table 1. Classification performances (F1 measures) for three levels
of valence and activation using face (f), voice (v), head (h) and hand
(ha) features: mean and standard deviation of F1-measure across
the 5 folds (5 dyadic sessions).

Lower-level HMM Classification: F1 (mean & std.dev)

classifier valence activation
HMM (v) 54.03 £+ 3.09 55.39 + 1.38
with markers 5491 +£2.82 57.53 £2.10
without markers 52.45 4+ 4.05 52.75 £ 2.11
HMM (f) 60.26 £ 3.71 47.71 + 4.49
HMM (h) 43.53 +2.59 51.51 4+ 2.05
HMM (ha) 4234 +£3.14 44.69 + 1.01
HMM and Score Vector modeling using GMM
classifier valence activation
HMM+GMM (v) 54.95 + 1.86 56.61 £+ 2.88
with markers 56.46 £ 2.38 58.88 £ 4.26
without markers 52.99 £ 2.41 54.09 £ 1.91
HMM+GMM (f) 59.62 £3.71 48.57 + 4.44
HMM+GMM (h) 4548 + 1.75 52.74 £ 1.83
HMM+GMM (ha) 43.09 +2.20 48.79 + 3.31
HMM and Score Vector modeling using Multinomial Logistic Regression (MLR)
classifier valence(nominal) activation(ordinal)
HMM+MLR (v) 5452 £2.24 57.74 £ 1.11
with markers 55.35£2.95 59.45 £+ 2.57
without markers 53.17 £2.48 55.79 £ 1.13
HMM+MLR (f) 5891 4 2.57 49.47 + 5.38
HMM+MLR (h) 4441 4+ 1.89 52.52 £ 1.32
HMM+MLR (ha) 43.57 +2.35 48.18 +2.93

5.2. Multimodal Fusion at Multiple Levels

In Table 2, we present the multimodal fusion results using face and
voice (fv), or face,voice and head (fvh) modalities (correspond-
ing only to the cases where the speakers are wearing markers).
We examine fusion at multiple levels; at the feature-level we train
multistream HMMs where the steam weights for audio and facial
modalities are optimized on the train set. At the model level, we
train GMMs to model multimodal score vectors, and at the score
level we perform a weighted average of the score-vector GMM
log-likelihoods, where the weights for each modality have been
optimized on the train set. The results using the hand modality are
omitted since they did not show a significant performance increase.

Based on the intuition that face and voice cues are more corre-
lated than head cues, we fuse the head movement modality at the
same or later stage than the other two. For the valence task, where
both facial and vocal cues have adequate discriminative power, fus-
ing them at the feature-level leads to good performance, and includ-
ing head cues at the score level gives a further small performance
increase. For the activation task, where the vocal cues alone perform
considerably better that the facial cues, it is preferable to combine
the three modalities at the score level, after adjusting the modality
weights on the train set. Finally, as expected, multimodal classifiers
perform considerably better than unimodal ones.

5.3. Speaker and Dialog Modeling

Here, we present the results after context modeling. We examine two
issues; firstly whether emotional context information from a speaker
could benefit classification of his current emotion (speaker model-
ing), and secondly whether including context from his interlocutor
further increases performance (dialog modeling). For speaker mod-
eling we use a first-order HMM denoted as H M M slzft while for di-
alog modeling we use a second-order HMM denoted as H M M3"¢,
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Table 2. Classification performances (F1 measures) for three levels
of valence and activation by fusing using face (f), voice (v) and head
(h) modalities at various levels: mean and standard deviation of F1-
measure across the 5 folds.

Table 3. Classification performances (F1 measures) for three levels
of valence for speaker and dialog modeling. We use the best multi-
modal fusion approach from the previous section.

valence

Fusion of face and voice: F1 (mean & std.dev)

No higher level modeling

classifier & fusion approach valence activation speaker classifier modeling Fl1 (mean & std.dev)
HMM(fv)+GMM feature 62.75 4+ 4.43 57.43 £ 3.76 with markers HMM(fv)+GMM-+fuse(h) - 63.26 4+ 4.05
HMM-+fuse(fv)+GMM(f) model 61.08 + 4.40 57.94 + 3.71 no markers HMM+GMM (v) - 5275 £ 2.11
HMM+GMM-+fuse(fv)  score 62.22 +2.73 | 59.27 £3.92 in total 58.92 4 2.65
Fusion of face, voice and head: F1 (mean & std.dev) Speaker modeling, 1st order HMM for each speaker separately
classifier & fusion approach valence activation speaker classifier modeling F1 (mean & std.dev)
HMM(fv)+fuse(h)+GMM  fv:feature, h:model 61.92+4.11 | 57.16 £3.79 with markers ~ HMM(fv)+ HMM.,fuse(h) HM]VI;;J‘ 66.09 + 3.39
HMM(fv)+GMM-+fuse(h) fv:feature, h:score 63.26 = 4.05 58.83 4 3.66 no markers HMM+HMM (v) HJMMSI;* 54.88 4 3.52
HMM-+fuse(fvh)+GMM  fvh:model 60.47 £4.37 | 58.64 +2.74 in total 61.30 £ 2.93
HMM-+fuse(fv)+GMM-+fuse(h) fv:model, h:score | 61.01 £ 3.80 | 59.30 + 2.92 Dialog modeling, 2nd order HMM for total dialog
HMM+GMM+fuse(fvh)  fvh:score 61.84 £3.26 | 61.154+295 speaker classifier modeling F1 (mean & std.dev)
with markers HMM(fv)+ HMM, fuse(h) HMMg"d 62.01 4+ 3.14
no markers HMM+HMM (v) HM]M(?”” 57.14 4 2.80
. . . . in total 59.98 4 2.61
ngher order modehng for speakelT .ConteXt dld_ nOt p rovide a,ny ad- Mixed modeling, according to whether the speaker wears markers or not
ditional benefits. In all cases, transition probabilities were estimated speaker Teaturcs modeling F1 (mean & std.dev)
on the training set. The results for the valence classification task are with markers ~ HMM(fv)+HMM, fuse(th)y ~ HM M j;t 66.09 % 3.39
presented in Table 3. We do not present results for activation, where no markers HMM+HMM (v) HMMZ"™ 57.14 £ 2.80
in total 62.31 £2.18

using temporal emotional context does not significantly increase per-
formance, as we found in our previous work [6].

Here, we make a distinction between emotion classification of
the speaker wearing the markers, where audio-visual cues are avail-
able, and the speaker without markers where only audio cues are
available. The temporal information that is beneficial for each case
may vary as can be seen in Table 3. The difference in available
modalities for each speaker makes emotion classification more reli-
able for the speaker wearing the markers, compared to the speaker
without markers. Therefore, although temporal emotional context
from the same speaker generally seems beneficial, context from the
other speaker through dialog modeling is beneficial only if the other
speaker has more available modalities, and therefore more reliable
emotional estimates. This motivated us to try mixed modeling, that is
speaker modeling for the speaker wearing markers and dialog mod-
eling for the speaker without markers, which resulted in the highest
classification performance, as can be seen in Table 3.

6. CONCLUSION AND FUTURE WORK

We have proposed and tested a hierarchical, multimodal framework
that captures emotional dynamics within and between emotions in
affective dialogs and incorporates multiple modalities at various lev-
els, depending upon the classification task and the modality. Accord-
ing to our results multimodal classifiers outperform unimodal ones,
especially for the case of activation where facial, vocal and head
movement cues carry relevant emotional information. Valence clas-
sification benefits significantly from incorporating temporal context
from the same speaker. Considering context from the other speaker
it is only helpful when we have a reliable (multimodal) emotional
estimate of that speaker. Our framework is flexible enough to han-
dle varying characteristics of each emotional task or dialogs where a
different amount of multimodal information is available per speaker.
We have examined HMM, GMM and MLR classifiers for utterance
and score-vector modeling, however other generative or discrimina-
tive approaches could be applied according to the problem in hand.
Our future goals include extending this framework to perform
recognition instead of classification, where we do not assume that
test dialogs are presegmented, and performing video processing to
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obtain visual information for the speaker without markers. Further,
we would like to include lexical information or information about
the subject of the dialog, in order to incorporate higher-level dialog
understanding in our emotion recognition system.
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