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Abstract—Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground

truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite

being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a

novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling

annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the

annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train

the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child

and a psychologist, to predict confidence ratings of the children’s smiles. We compare and analyze the model against two baselines

where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to

bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.

Index Terms—Time series modeling, expectation maximization (EM) algorithm, multiple annotators, behavioral signal processing

Ç

1 INTRODUCTION

TRACKING the evolution of a time series over a continu-
ous variable is a problem of interest in several domains

such as social sciences [1], [2], economics [3], [4] and medi-
cine [5], [6]. However, often times the variable of interest
may not be directly observable (such as in behavioral time
series of psychological states) and judgments from multiple
annotators are pooled to estimate the target variable. A clas-
sic example is tracking affective dimensions in the study of
emotions [7], [8], [9] where ratings from multiple annotators
are used to determine the hidden affective state of a person
from audio-visual data of emotional expressions. The gen-
eral practice in these behavioral domains is to infer the hid-
den variable by using human annotation. These studies
often use heuristic metrics such as mean over the annotator
ratings or select annotators based on confidence intervals
for the true estimate (the ground truth) of the unobserved
variable. However, these metrics may not provide an accu-
rate representation for the ground truth. Apart from assum-
ing a definite relation between the ground truth and the

annotator ratings, several factors such as individual differ-
ences between the annotators and annotator reliability are
not accounted for.

Recent research has addressed a few of these problems. For
instance, Nicolaou et al. [10] assume that there is a latent space
shared by annotator ratings and identify it using dynamic
probabilistic Canonical Correlation Analysis (CCA) model
with time warping. Another model proposed by Mariooryad
et al. [11] aligns the annotator ratings by adjusting delays
identified using mutual information between features and
every annotator’s ratings. Along the lines of the proposals by
Nicolaou et al. [10] and Mariooryad et al. [11], we present a
new model which assumes that the ground truth can be com-
puted using a set of low level features based on a “feature
mapping function”. Furthermore, the annotators process this
(latent) ground truth based on annotator specific “distortion
functions” to provide their ratings. Ourmodel is inspired from
multiple annotator modeling proposed by Raykar et al. [12],
and Fig. 1 provides an intuitive summary of themodel. Similar
to Mariooryad et al. [11], our model relies on both annotator
ratings as well as features to identify the latent ground truth
and is, in fact, a generalization of their model. This design
assumption is inspired from the classic channel transfer func-
tion estimation in communication theory [13], [14] wherein the
channel (annotator) corrupts the true signal based on a transfer
function (distortion function). These annotator specific distor-
tion functions, apart from allowing model evaluation on
annotator ratings themselves, also provide a window to an
annotator’s hiddenperceptual and cognitive processes.

The proposed model specifically targets the class of
problems where the ground truth can not be observed,
but judgments from multiple annotators are obtainable/
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available. We approach this problem using an Expectation
Maximization (EM) [15] class of algorithms, a framework
widely used under similar circumstances involving an
unobserved/hidden variable. We assume specific structures
for the feature mapping function and the distortion func-
tions and present an EM algorithm involving iterative exe-
cution of an expectation step (E-step) and a maximization
step (M-step). The E-step estimates the ground truth based
on the values of model parameters at hand and the M-step
recomputes the model parameters based on the ground
truth obtained in the E-step. We demonstrate the effective-
ness of the proposed algorithm in a study involving predic-
tion of time continuous confidence ratings of smile intensity
in a video dataset involving toddlers engaging in a brief
play interaction with an adult. A set of 28 annotators pro-
vide their confidence ratings of the child’s smile by looking
at a video of the face recorded during the interaction. We
present a brief data description and statistics on annotator
ratings followed by experimental details of testing various
baselines and the proposed model on this dataset. Our
results show that our model outperforms baseline models
that assume ground truth to be the mean of all annotator
ratings as well as the model proposed by Mariooryad et al.
[11]. We present our analysis on the distortion functions
and compare the structural patterns in the estimated
ground truth, annotator ratings and the mean over all anno-
tator ratings. Finally, we also observe the impact of remov-
ing a few annotators and record performance changes over
each annotator by the proposed and the baseline models.

To summarize, the major contributions of this paper
include: (i) designing a system to jointly model time-
continuous annotations from multiple annotators (ii) pro-
posing an EM based algorithm to train the system and,
(iii) applying and interpreting of the system on a specific
case study involving estimating confidence ratings of
smile intensity.

2 BACKGROUND

Several previous works have addressed a range of multiple
annotator problems involving discrete class labels. Fig. 2
shows a few schemes for the discrete class modeling prob-
lem, each with a specific set of assumptions. Dawid et al.
[16] provided one of the earlier models for the problem as
shown in Fig. 2a. a� represents an unobserved reference
label for a given training example, drawn from a probability

distribution such that P ða�Þ ¼ p�. Given a set of N annota-
tors, the nth annotator provide his judgment of the example
based on a reliability matrix An. Raykar et al. [12] extended
the above model to train a discriminative classifier as shown
in Fig. 2b. The model first estimates the probability of refer-
ence label given a set of features XX based on a function
fðXX; uuÞ (uu is the set of function parameters). Each of the anno-
tators provides his/her judgment assuming a similar strat-
egy as the first model. Audhkhasi et al. [17] presented a
further modification assuming variable feature reliability as
shown in Fig. 2c. The data is assumed to be generated based
on the parameter z, which also affects the judgment of each
annotator. The probability of a� is obtained based on the fea-
turesXX, through a discriminative maximum entropy model.
Similar multiple annotator models have also been proposed
by Bachrach et al. [18], Yan et al. [19] andWelinder et al. [20].
However thesemodels have not been generalized to continu-
ous time series annotations, despite covering a range of mul-
tiple annotator problems. Apart from multiple annotator
models, other schemes that handle noisy distortion of data
include matrix factorization techniques [21], [22], wavelet
basedmethods [23] and othermatrix recoverymethods [24].

On the other hand, several studies have also focused on
modeling time series data. A classic example is modeling
emotional dimensions (e.g., valence, dominance, arousal)
during human interaction [9], human-computer interaction

Fig. 1. A figure providing the intuition of proposed model, inspired from Raykar et al. [12].

Fig. 2. Graphical models for schemes previously proposed to model
discrete label problems. (a) Maximum likelihood estimation of observer
error-rates using the EM algorithm [16]. (b) Supervised learning from
multiple annotators/experts [12]. (c) Globally variant locally constant
model [17].
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[8], [25] as well as in music [26], [27]. These studies use mul-
tiple annotators to derive the ground truth reference and
use heuristic metrics over the annotator ratings as a proxy
for the latent emotional dimension. For instance, all the
studies listed above use mean over annotator ratings as the
ground truth. Other human interaction modeling examples
that represent time series of discrete events capturing a hid-
den internal human state include characterizations of client
and counselor behaviors during psychotherapy [6], [28],
couples therapy [29] and human-machine spoken dialogs
[30]. These studies either substitute ground truth using
annotations from a single annotator or use majority voting
over multiple annotator ratings at every sample. These
approximations of the ground truth are rather crude as they
do not account for annotator specific traits such as their pro-
ficiency, subjective references as well as motor and cogni-
tive delays in task performance.

Recent research studies have addressed a few of these
problems in aggregating annotator ratings using novel
methods to account for annotator disparities. For instance,
Nicolaou et al. [10] assume that each annotator’s ratings
could be factored into individual factors and a warped
shared latent space representation. They perform this fac-
torization using a Dynamic Probabilistic CCA (DPCCA)
model. In later versions of their model [31], they proposed
further extensions where features from the data are
assumed to be generated conditioned on the latent shared
space (Supervised-Generative DPCCA) as well as a dis-
criminative model where the features determine the latent
shared space (Supervised-Discriminative DPCCA). In its
formulation, the Supervised-Discriminative DPCCA is sim-
ilar to the proposed model. The model uses CCA and
dynamic time warping to address the fact that Raykar’s
model [12] does not account for temporal correspondences
between annotation samples. On the other hand, our
model uses a distortion function which operates on the
latent ground truth to provide annotator ratings. The dis-
tortion function provides proxies for biases and delays esti-
mated for each annotator, which we further interpret in the
experiment of our interest (Nicolaou et al. [31] provide
other interpretations such as ranking and filtering annota-
tions). Also, Nicolaou et al. [31] evaluate model perfor-
mance based on how well the features predict the latent
ground truth. Although this evaluation is appropriate, the
model should also be evaluated on predicting the observed
data (i.e., the annotator rating themselves), which is not
trivial to obtain using this model. Mariooryad et al. [11]
proposed another approach where they first identify anno-
tator specific delays based on mutual information between
the annotator ratings and the data stream. The final aggre-
gation is computed as a frame-wise mean of annotator rat-
ings after accounting for delays. Note that this model uses
the data feature stream in computing the annotator delays
and it is possible to compute (and hence evaluate on) the
individual annotator ratings from the ground truth by rein-
troducing those delays. Our model is an extension to the
model proposed by Marioordad et al. [11] wherein instead
of only estimating a constant delay, we estimate a more
general Finite Impulse Response (FIR) filter which can not
only account for delays but also scaling and bias introduc-
tion in annotator ratings.

Generally, our work is inspired from the models on dis-
crete class labels and is modified to be applicable on contin-
uous annotations. In the next section, we first describe the
general framework for our model. We then describe the
data set used for evaluating our model and also discuss the
baseline models in comparison to the proposed model.
Finally, we interpret the model parameters obtained on the
data set and analyze the findings.

3 DISTORTION BASED MULTIPLE ANNOTATOR

TIME SERIES MODELING

We propose a distortion-based modeling scheme similar in
structure to Raykar et al. [12] to model time series annota-
tions from multiple annotators. Given a session s drawn
from a set of sessions S, we assume that the ground truth is
conditioned on the session features XXs. Furthermore the
annotator ratings are assumed to be noisy modifications of
the hidden ground truth, determined by annotator specific
functions. We describe these two assumptions behind our
model in detail below.

(i) First, we assume that the ground truth ratings for the
session s, aas� ¼ ½as�ð1Þ; . . . ; as�ðtÞ; . . . ; as�ðTsÞ�T are con-
ditioned on a set of session features XXs ¼ ½xxsð1Þ; . . . ;
xxsðtÞ; . . . ; xxðTsÞ�. Ts is the number of data frames in
s, as�ðtÞ is the ground truth value at the frame index t
and xxsðtÞ is a K-dimensional column feature vector
also at the frame index t. aas� is a column vector repre-
sentation of the time series fas�ð1Þ; . . . ; as�ðTsÞg. Equa-
tion (1) shows the relation between the ground truth
time series aas� and XXs based on a feature mapping
function g. uu represents the set of mapping parame-
ters for the function g.

aas� ¼ g
�
XXs; uu

�
: (1)

(ii) Next, we assume that the ratings provided by each
annotator are distortions of the ground truth. For the
session s, ratings from the nth annotator are repre-
sented as a column vector aasn ¼ ½asnð1Þ; . . . ; asnðtÞ; . . . ;
asnðTsÞ�T , asnðtÞ being the rating at the tth frame. We
obtain aasn based on a distortion function h operating
on aa� as shown in (2). For the nth annotator, DDn rep-
resents the set of parameters for h.

aasn ¼ hðaas�; DDnÞ; n ¼ 1; 2; . . . ; N: (2)

Fig. 3 shows the Bayesian network for the pro-
posed scheme. All session specific variables are
located inside the plate. The conditional dependen-
cies (direction of edges) are determined based on the
Equations (1) and (2). aas� can be determined based on
uu and XXs, hence the two variables are set to be the
parents of aas�. Similarly,DDn and aas� are parents of aa

s
n.

3.1 Choices for the Feature Mapping Function and
the Distortion Function

In this work, we chose linear functions with additive noise
terms as the representations for the functions g and h. Lin-
ear representations lead to better interpretability and easier
parameter learning but the model can be extended to more
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complicated representations. The additive noise terms
account for factors that can not be captured by linear model-
ing and is a commonly used component in various regres-
sion and classifier learning schemes [32]. We describe our
choices in detail below.

Feature Mapping Function. We choose a linear mapping
between the featuresXXs and aas� as shown below.

aas� ¼ g
�
XXs; uu

� ¼ XXs

1

� �T
uu þ ccs: (3)

In the equation above, uu is a K þ 1 dimensional vector,

ccs ¼ ½csð1Þ; . . . ;csðtÞ; . . . ;csðTsÞ�T is a random noise vector
with noise variable csðtÞ added at the tth frame. 1 repre-
sents a vector of ones and appends a bias term to feature
vector at each frame. In effect, ground truth at frame t, as�ðtÞ
is obtained from (3) as

as�ðtÞ ¼
xxsðtÞ
1

� �T
uu þ csðtÞ: (4)

We assume the noise vector ccs � Nð0; sc � IITsÞ:1 Given
the affine transformation in (3), aas� follows the distribution
given by

aas� � N
�

XXs

1

� �T
uu; sc � IITs

�
: (5)

Similar assumptions on noise distribution are made in
several regression and classification models [33], [34]. The
Gaussian noise distribution allows for easy computation,
however, can be replaced with other noise distributions as
done is several previous works [35], [36].

Distortion Function. An annotator may modify the ground
truth based on his/her perception. We aim to capture this
annotator specific modification using a distortion function
operating on the ground truth. We assume that the nth
annotator’s ratings aasn for the session s are obtained after
distorting the ground truth based on a linear time invariant
(LTI) filter with additive bias and noise terms. Although a
linear operation, LTI filters can account for scaling and time
delays introduced by the annotators. We assume a filter of

length W with coefficients ddn ¼ ½dnð0Þ; . . . ; dnðW � 1Þ� along
with an additive bias term dbn. The noise random vector

is represented by ffs
n ¼ ½fnð1Þ; . . . ;fnðtÞ; . . . ;fnðTsÞ�T where

fnðtÞ is noise random variable for tth frame. The set of
parameters Dn for the distortion function h as represented
in (2) are the filter coefficients dd1; . . . ; ddN and the bias terms

db1; . . . ; d
b
N . Based on the filter coefficients, the bias term and

the noise vector, aasn is given as (6)

aasn ¼ hðaas�; ddnÞ ¼ ðddn � aas�Þ þ ðdbn � 1sÞ þ ffs
n: (6)

In (6), 1s represents a vector of ones with as many entries
as the number of frames in the session s. The operator � rep-
resents the convolution operation between the time series as�
and annotator specific filters ddn. Further, we assume ffn to
be a zero mean Gaussian noise with a covariance matrix of
the form ðsf � IITsÞ, where IITs represents an identity matrix
with dimensions ðTs; T sÞ. Since ffn � Nð0; sf � IITsÞ, we can
state the following given the affine transformation in (6)

pðaasnjaas�; ddnÞ � N
�
ðddn � aas�Þ þ ðdbn � 1sÞ; sf � IITs

�
: (7)

4 TRAINING METHODOLOGY

We use data log-likelihood maximization technique for
training the proposed model. Based on the definitions of the
functions h and g, we maximize the likelihood of the
observed data (i.e., the annotator ratings) to obtain the

parameters ddn; d
b
n and uu. Also note that in the multiple anno-

tator experiments under consideration, the ground truth aas�
is not directly observable. Therefore the Expectation-
Maximization algorithm [15] is a suitable candidate
for maximum likelihood estimation. The data log-likelihood
L is defined on the observed annotator ratings haas1; . . . ; aasNi
given the feature values XXs and model parameters PP ¼
hdd1; . . . ; ddN; db1; . . . ; dbN ; uui over all the sessions s 2 S as
shown below.

L ¼
X
s2S

log pðaas1; . . . ; aasN jPP; XXsÞ: (8)

The above expression is equivalent to the marginalized
log-likelihood over the hidden ground truth variable aas� as
given below.

L ¼
X
s2S

log

Z
aas�
pðaas1; . . . ; aasN; aas�jPP; XXsÞ @aas�: (9)

A complete derivation of the EM algorithm for the model
in Fig. 3 based on the structural assumptions for the distor-
tion and feature mapping functions is given in Appendix.
Below, we briefly summarize the model training using the
EM algorithm and the criteria to evaluate the model.

4.1 EM Algorithm Implementation

� Initialize filter coefficients hdd1; . . . ; ddNi, bias terms

hdb1; . . . ; dbNi and mapping function parameter uu.
� While the data-log likelihood converges, perform

- E-step: In this step, we obtain the ground truth
estimate �aas�. Based on the Gaussian distribution

Fig. 3. Graphical model for the proposed framework. XXs represents the
features, aas� represents the ground truth. uu and hDD1; . . . ; DDNi are the set
of parameters for feature mapping function and distortion functions,
respectively.

1. We use the notation Nðmm; ssÞ to represent a Gaussian distribution
with mean mm and covariance matrix ss. In Nð0; sc � IITs Þ, 0 represents a
zero mean vector and sc � IITs is a diagonal covariance matrix with all
entries equal to sc. In this case, the operator � implies multiplication of
a scalar value to all entries of a matrix/vector.
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functions defined in (5) and (7), we arrive at the
optimization problem shown in (10). jj:jj2 repre-
sents the L2 vector norm.

�aas� ¼ argminaas�

XN
n¼1

����ðaasnÞ � ðddn � aas� þ dbn � 1sÞ����2
2

(10)

þ ����ðaas�Þ � XXs

1

� �
uu
����2
2
; 8s 2 S:

- M-step: In the M-step, we estimate the model
parameters based on the Gaussian distribution
functions defined in (5) and (7). A detailed deriva-
tion of this estimation is shown inAppendix and it
turns out that we can estimate filter coefficients

hdd1; . . . ; ddNi, the bias terms hdb1; . . . ; dbNi and par-
ameter uu by operating separately on the two con-
stituent terms. The optimization problem to obtain
the distortion function parameters is given below.

ddn; d
b
n ¼ arg min

ddn;d
b
n

X
s2S

XN
n¼1

����ðaasnÞ
� ðddn � �aas� þ dbn � 1sÞ����2

2
:

(11)

The above optimization to obtain ddn and dbn
can be carried out jointly by using a matrix for-
mulation. Optimization problem to obtain uu is
stated below.

uu ¼ argminuu
X
s2S

������ð �aas�Þ � XXs

1

� �
uu
������2
2
: (12)

� End while
In the next section, we describe our evaluation criteria on a
given test set after training themodel using the EMalgorithm.

4.2 Evaluation Criteria

We chose two evaluation criteria for our model: (i) accuracy
of the feature mapping function in predicting the ground
truth, and (ii) accuracy in prediction of annotator ratings
themselves. We discuss these two criteria below.

4.2.1 Eval1: Accuracy of the Feature Mapping Function

in Predicting the Ground Truth

In our first criterion, we estimate the latent ground truth

aŝ;true� for a test session ŝ using the annotator ratings only
based on the optimization problem stated in (13). Then, we

make ground truth predictions aŝ;pred� from the feature map-
ping function as shown in (14). The Eval1 criterion is given

as the correlation between the estimated (aŝ;true� ) and pre-

dicted (aŝ;pred� ) ground truths. This evaluation criterion was
also adopted by Nicolaou et al. [10] where they compute the
ground truth based on annotator ratings and use features to
predict the estimated ground truth. They motivate this eval-
uation criteria by arguing that a better ground truth can be
better predicted using the low level features. Similarly, Mar-
iooryad et al. [11] first compute the ground truth after
accounting for lags from annotator ratings and later use fea-
tures from the data to predict sufficient statistics of the

estimated ground truth such as its mean.

aaŝ;true� ¼ argminaaŝ�

XN
n¼1

����ðaaŝnÞ � ðddn � aaŝ� þ dbn � 1sÞ����2
2

(13)

aaŝ;pred� ¼ XXŝ

1

� �
uu: (14)

4.2.2 Eval2: Accuracy in Predicting the Annotator

Ratings

Since the ground truth is a latent variable in the problems of
interest, we also evaluate our model directly on the
observed data, i.e., the annotator ratings themselves. An
accurate prediction of observed ratings would imply that
the model is able to capture the inherent relationship
between the features, ground truth and annotator ratings.
We report the correlation coefficient (r) between the true
and predicted ratings per annotator which also allows for
observing the performance for each annotator separately.
The annotator ratings are obtained using the following two

steps: (i) we first predict the ground truth aŝ� on a test ses-
sion ŝ using the feature mapping function as stated in (14)

(ii) next, we compute aaŝ1ðtÞ; . . . ; aaŝNðtÞ from aaŝ� and dd1; . . . ; ddN
using the operation shown below

aaŝn ¼ ddn � aaŝ� þ dbn � 1s: (15)

Note that these estimates of aaŝ� and aaŝn are the means of
Gaussian probability distribution functions stated in (5) and
(7), hence also the maximum likelihood estimates. In the
next section, we describe the experimental evaluation and
our dataset of choice.

5 EXPERIMENTAL EVALUATION

We evaluate the proposed framework on ten sessions of a
dyadic child-clinician interaction dataset, the Rapid-ABC
dataset [37], [38], [39] focusing on perceived ratings of the
strength of a child’s smile. The data were collected to com-
putationally investigate behavioral markers of psychologi-
cal and cognitive health conditions such as Autism
Spectrum Disorders; the patterns of smiles are hypothesized
to be an important cue [40]. Each session is approximately
three minutes long and involves natural interaction between
an adult and a child between the ages of 15 and 30 months.
The interaction elicits verbal as well as non-verbal behaviors
(e.g., smile, laughter, grins). The overarching goal of this
data collection was to understand various aspects of child-
adult interaction including social response, joint attention
and child engagement.

For the purpose of our study, a set of 28 annotators later
independently viewed a video from each session that cap-
tured the child’s face during the interaction. They provided
ratings on the strength of a child’s smile (using a joystick
arrangement), recorded at a frame rate of 30 samples/sec-
ond over a dynamic range of 0-500. The corresponding
audio included both psychologist and child speech. The
annotators underwent an extensive initial training in rating
the smile confidences. During this training, the annotators
would rate a file and their ratings were discussed with the
data collectors (third and fourth authors of this paper). The
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discussion points included disagreements with the data col-
lectors and other annotators, the offset and onset of smile
confidence annotations and other factors such as the
annotator’s consistency. After multiple rounds of this train-
ing procedure, they were assigned the 10 sessions used in
this study to code by themselves with no feedback. We
show the inter-rater agreements using the correlation coeffi-
cient (r) between every pair of annotators as the metric in
Fig. 4. These r values are computed over frames from all the
10 sessions. The annotator indices are assigned based on
agreement with the first annotator; where the last index is
assigned to the annotator having least agreement with
annotator 1.

From the figure, we observe that the r values are in the
range of 0.35 to 0.80 for most of the annotator pairs. However
the r values of annotator 27 and 28 with other annotators are
particularly low. This is indicative of a lower quality of rat-
ings from these two annotators. Therefore, apart from ini-
tially testing our models by including all the annotators, we
also conduct a follow up evaluation after removing these
two annotators and analyze the results. Evaluation including
annotators 27 and 28 helps us to interpret their impact on the
model by analyzing the parameters corresponding to these
annotators. On the other hand, evaluation without annota-
tors 27 and 28 provides an insight into the impact of remov-
ing noisy annotator on the predictive capability of themodel.
In order to evaluate our model, we perform a 10 fold cross-
validation, where eight sessions are used for training, 1 as
development set and 1 for testing. In the next section, we
describe the featuresXXs used in this work.

5.1 Feature Set

Smile is a visual phenomenon and previous research has
used several visual features for smile detection [41], [42]
and analysis [43]. We use a set of similar video based fea-
tures in our study. The video features are computed per
video frame (30 frames/second) and are synchronized with
the annotator ratings. We describe the features below.

Facial Landmarks. We use the CSIRO Face analysis SDK
[44] to track facial landmarks on the child’s face. We fit 66
landmark points to the face at every frame. Fig. 5 shows a
video frame from the database with landmark points

marked on the face. Based on these landmark points, we
compute two sets of features: (1) velocity of the head based
on the nose-tip landmark point, and (2) distance and veloc-
ity of all other landmark points with respect to the nose tip
landmark point.

Local Binary Patterns (LBP) Based Features. LBP features
[45] are well known for describing facial expressions. Dur-
ing the computation of this feature, every pixel’s intensity is
compared to its neighbors and a binary vector is returned.
LBP descriptor is a histogram over these binary patterns.

We combine the facial landmark features and the LBP
features to obtain a feature vector with dimensionality
K ¼ 387 for every video frame. For more details on the fea-
tures, please refer to [44], [45]. In the next section, we pro-
vide a description of the baseline models.

5.2 Baseline Models

We use two baseline models to compare against the pro-
posed model. In the first baseline model the ground truth is
assumed to be a frame-wise mean over all the annotator rat-
ings and the second baseline is borrowed from the work by
Mariooryad et al. [11]. We discuss these baselines below.

5.2.1 Baseline 1: Frame-Wise Mean of Annotator

Ratings

We use a baseline model, where the ground truth at a given
frame is assumed to be the mean over ratings from all the
annotators at that frame. Several previous works [8], [9],
[46] have used this assumption in obtaining the ground
truth frommultiple annotators on similar time series model-
ing problems. This scheme assigns equal weight to each
annotator and does not account for individual differences.
In the baseline case, the relation between the ground truth
and the annotator ratings is presumed before hand and can
be represented by the following operation in (16). IITs repre-
sents an identity matrix of dimensionality ðTs; T sÞ.

aas� ¼
1

N

	
IITs jIITs j � � � jIITs


|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N-times

aas1
..
.

aasN

2
64

3
75: (16)

We incorporate the assumption in (16) in the framework
of our model. We obtain the mapping parameter uu based on
aas� (obtained as in (16)) using the MMSE criteria in (12).
However, instead of obtaining filter coefficients using EM
algorithm, they have to be computed based on equation (16).
We use two different methods to compute the filter coeffi-
cients using the hard coded ground truth aas� from (16) as
listed below.

Fig. 4. Correlation coefficient (r) between every pair of annotators repre-
sented as an image matrix. Colorbar on the right indicates the value of
the correlation coefficient. Due to indexing based on agreement with
annotator 1, annotators with lower indices have a higher r with annotator
1. Annotator 27 and 28 have a very low agreement with several of the
annotators.

Fig. 5. Facial landmark points tracked on the children’s face during
interaction.
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Baseline 1(a): In the first baseline model, the filter coeffi-
cients are computed using the MoorePenrose pseudoinverse
(Pinv) [47] operation on the set of identity matrices in (16) as
shown in (17). As per (17), the multiplication of IITs to as� to
obtain asn implies that the filters are inferred to be unit
impulse response filters with no delay. Hence the filter coef-
ficient ddn is a unit Kronecker delta function. The bias terms

dbn are all estimated to be 0.

aas1
..
.

aasN

2
64

3
75 ¼ Pinv

� 1

N

	
IITs jIITs j � � � jIITs


|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N-times


aas� ¼

IITs

..

.

IITs

2
64

3
75aas� (17)

Baseline 1(b): In this case, we set aas� to the value shown in
(16). Then, we compute the filter coefficients ddn and the bias

terms dbn using the MMSE criteria listed in (11). The filter
length parameterW is tuned on the development set.

5.2.2 Baseline 2: Lag Compensated Aggregation of

Annotator Ratings

Our second baseline is borrowed from the work by Marioor-
yad et al. [11] where we first estimate the lags per annotator
with respect to the features obtained from the data stream.
The lags per annotator are computed by introducing a delay
in the ratings per annotator till his/her ratings have themax-
imum mutual information with the frame-wise features.
Note that this formulation is a special case of the proposed
model when the distortion function is constrained to be a
unit impulse response filter with a constant delay (ddn in (6) is
set to a Kronecker delta function with the delay correspond-

ing to the nth annotator). The bias terms dbn are set to 0 in this
formulation. After compensating for the annotator delays
calculated on the training set, as� for every data partition is
computed as the frame-wise mean of the aligned annotator
ratings (also the solution to the optimization in (13)). We
obtain the mapping parameter u from the computed aas� using
theMMSE criteria in (12). In order to compute back the anno-
tator ratings for the Eval2 criterion, individual annotator rat-
ings on the test set are computed as per the convolution
stated in (15). In essence, the convolution operation reintro-
duces the estimated delays in the ground truth to compute
each annotator’s ratings. For more details regarding this
baseline, please refer to Section 4 in [11].

5.3 Results

Using the stated cross validation split, we train the baseline
and proposed models. For the proposed model and the

baseline model 1(b), the filter length parameter W is tuned
on the development set. Note that W is tuned globally over
all the annotators, as tuning a W for each annotator is com-
putationally expensive and the filter characteristics are
expected to be robust to small changes in the length W .
Table 1 shows the correlation coefficient r of feature map-
ping prediction with the estimated ground truth (Eval1 crite-
rion). Note that results are the same for baselines 1(a) and 1
(b) due to the common ground truth computation criteria,
i.e., frame-wise means of annotator ratings. The Eval1 crite-
rion correlation of the proposed model is better than the
baseline using the Fisher z-transformation test [48] consider-
ing value at each frame to be a sample. Fig. 6 shows the r in
predicting the observed annotator ratings (Eval2 criterion).
For the Eval2 criterion, the proposed model is significantly
better than all the baselines for 20 annotators (Fisher z-trans-
formation test, p-value < 10 percent, number of samples is
the number of analysis frames: �37k). This excludes the
noisy annotators 27 and 28 as observed in Fig. 4. The Cohen’s
D [49] comparing the proposed model against each baseline
yields a values of .31 (baseline 1a), .11 (baseline 1b) and .33
(baseline 2). The Cohen’s D is computed using correlation
coefficients for each annotator as the sample values. These
values indicate a small improvement effect over baseline 1b
andmedium improvement effect over baselines 1a and 2.

5.4 Discussion

The performance results in Table 1 are in the expected
order. The naive baseline of computing the ground truth as
frame-wise mean of the annotator ratings could not be well
modeled by the features at hand and thus performs the
worst. Adjusting for annotator specific delays and then
aggregating the annotator rating performs better than base-
lines 1(a) and 1(b). However factors such as differences in
annotator biases, range of annotation and context in annota-
tion can not be modeled by imposing a constant delay
assumption on the distortion functions. These factors are

TABLE 1
Correlation Coefficient r between the Estimated Ground Truth

and the Predictions from the Feature Mapping Function

Eval1 criteria, Baseline Baseline Proposed
correlation coefficient 1a/1b 2 Model
with the ground truth 0.28 0.30 0.34

A higher r implies that the estimated ground truth is better estimated using
the low lever features. The improvement over the closest baseline using the
proposed model is significant based on the Fisher z-transformation test [48]
(p-value < .001, z-value = 6.1, number of samples equals the number of
analysis frames: �37k).

Fig. 6. Correlation coefficients r between the true and predicted annota-
tor ratings. A higher r implies that the model is better able to model the
dependencies between low level features and the annotator ratings. The
r values of proposed model significantly better (at least at 5 percent level
using Fisher z-transformation test) than all the baseline are marked with
�. Annotators 3,16 and 18 are significant only at 10 percent level
(marked with a tu) and annotator 1, 5, 14, 17, 24, 25, 17 and 28 are either
not significantly better or worse than at least one of the baselines.
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accounted for in the proposed model by allowing the distor-
tion function to be an LTI filter, thereby providing the best
performance. For the Eval2 criterion in predicting the anno-
tator ratings, the proposed model performs the best for
most of the annotators. Performance is particularly low in
predicting the ratings for annotator 27 and 28. This indicates
that these annotators are noisy and hard to model, an obser-
vation consistent with the inter-rater correlations shown in
Fig. 4. The performances of baseline 1(a) and 2 are compara-
ble for the Eval2 criterion. This stems from the fact that the
distortion functions for both these baselines are constrained
to be unit response filters (with additional delay allowed for
baseline 2), and thus carry low modeling strength in pre-
dicting back the annotator ratings. Baseline 1(b) still allows
for the distortion function to be an LTI filter which can
account for a longer temporal context in predicting annota-
tor ratings from the ground truth (even though the ground
truth is a naive frame-wise mean of annotator ratings). In
the following section, we make a few more observations
regarding the model parameters, the inferred ground truth
and effect of removing a few annotators. We note that the
interpretation of these parameters only offers a window to
the complex cognitive factors.

5.4.1 Interpreting the Distortion Function Parameters

In this section, we plot and interpret various parameters
of the distortion function. Fig. 7 shows the LTI filter coef-
ficient values for the 28 annotators, obtained using model

training over all the 10 sessions. The bias term in the filter
is shown as a stem plot in Fig. 8. From the filter coeffi-
cients in Fig. 7, we can make several observations to com-
pare an annotator with others. For instance, the filter
coefficients of Annotator 1 are such that the as� samples in
the past are weighted higher in convolution to obtain as1.
The opposite is true for annotator 6 as as� samples closer
to the current frame carry higher weight than the samples
in the past. A phase delay analysis of filters from these

Fig. 7. Filter coefficients estimated by the proposed EM algorithm for each of the annotators. The filter are plotted as dð�ðW � 1ÞÞ; . . . ; dð�1Þ; dð0Þ
used during convolution as: asnðtÞ ¼

PW�1
w¼0 as�ðt� wÞ � dnð�wÞ. A higher value for the coefficients towards the left in the figure implies a higher

emphasis on the past samples.

Fig. 8. Annotator bias dbn estimated using the proposed model.
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two annotators suggests that the filter from annotator 1
introduces a greater delay in the ratings than that of
annotator 6. Another observation is that the filter coeffi-
cients for annotator 27 and 28 have lower absolute values.
Thus, the ground truth ratings are attenuated to obtain
annotations for the annotator. On the other hand, ratings
for annotator 15 is obtained after amplification of the
ground truth. Overall, the shape of LTI filter co-efficients
varies across annotators (e.g., annotators 4 and 10 have a
U-shaped filter and annotator 17 and 20 have a more flat
filter shape). We note that these filters coefficients are
obtained in a data driven fashion and their phase and
magnitude responses provide an ad-hoc quantification of
the complex annotation behavior.

From the bias terms shown in Fig. 8, we observe that
annotator 14 and 28 have a high positive annotation bias
term and annotator 10 has a high negative bias term. These
terms are added to the ground truth to obtain the respective
annotator ratings. The group of annotators 6, 7, 11 and 24
have a relatively low bias term. We also plot the annotator
delays estimated using the baseline 2 in Fig. 9. Annotators
1, 14, 18 and 28 are estimated to have the longest delays.
This observation is fairly consistent with the filter coefficient
estimates shown in Fig. 7, where the filter coefficients in the
past are estimated to carry higher value thereby introducing
a larger phase delay.

We note that interpretation of these parameters only
offers a window to the complex cognitive factors during
annotation. The parameters of annotator bias, delay and dis-
tortion are estimates obtained as per the model assump-
tions. They are further influenced by other factors such as
the overall interaction dynamics between the child and the
psychologist as well as other latent annotator states (such
as their mood and the environment). These factors are not
accounted for by our model and can be the subject of a
future study.

5.4.2 InferredGround Truth from the Annotator Ratings

We compare the estimated ground truth for an arbitrary
segment of the data, from the various baselines and the
proposed model in Fig. 10. As expected, we observe that

the ground truth estimate from baseline 2 has a phase lead
over that estimated from the baseline 1(a)/(b) (compare the
peaks in the plot). For the proposed model, a lead is again
observed when compared to baseline 1(a)/(b), but not as
large as baseline 2. Also, the dynamic range for the segment
is higher for the baseline estimated from the proposed
model. This results from the capability of the proposed
model to be able to account for annotator bias as well as
amplifying/attenuating their ratings, as discussed in the
previous sections. Furthermore, high frequency compo-
nents in the features get added during the ground truth
computation using the proposed model (Equation (33)). The
features are otherwise not used during framewise aggrega-
tion in the baseline models.

5.4.3 Performance after Removing Annotators

27 and 28

Finally, we observe the impact on the performance of the
model after removing annotators 27 and 28. We observed
that annotators 27 and 28 had the lowest inter-rater correla-
tion with annotators in the Fig. 4. We remove these annota-
tors during model training and testing. The correlation
coefficient r of feature mapping prediction with the esti-
mated ground truth (Eval1 criterion) is shown in Table 2.
From the results for Eval1 criterion in Table 2, we observe
that the performances of all the models are better after
removing annotators 27 and 28. Also, the increase in absolute
performance is the highest for the proposedmodel. This indi-
cates that the ground truth estimation in case of the proposed
model benefits themost after removing noisy annotators.

Fig. 11 show the r between the predicted and true anno-
tator ratings (Eval2 criterion). After removing the

Fig. 9. Annotator delays estimated using the baseline 2 proposed in
Mariooryad et al. [11].

Fig. 10. Ground truth aas� as estimated by various baseline and proposed
models on an arbitrary section of the data.

TABLE 2
Correlation Coefficient r between the Estimated Ground Truth
and the Predictions from the Feature Mapping Function after

Removing Annotators 27 and 28 from Training

Eval1 criteria, Baseline Baseline Proposed
correlation with 1a/1b 2 Model
the ground truth 0.29 0.31 0.36

The proposed model is significantly better than the closest baseline model (base-
line 2) based on the Fisher z-transformation test [48], considering value at each
frame to be a sample (p-value < 0.001, z-value = 7.7).
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annotators 27 and 28, the proposed model performs sig-
nificantly better than all the other baselines for 21 out of
26 annotators (at p-value < 10 percent level). In this
experiment, we obtain Cohen’s D values of .95, .30 and
.97 when comparing the correlation coefficient samples
obtained using the proposed method against baseline 1a,
1b and 2, respectively. This indicates a medium improve-
ment effect size over baseline 1b and strong improvement
effect sizes over baselines 1a and 2. The improvement in
Cohen’s D is primarily obtained due to discounting of
annotators 27 and 28, which otherwise lead to an increase
in standard deviation of obtained correlation coefficients,
as presented in Fig. 6. Note that the annotators 27 and 28
were poorly modeled by the proposed model as seen in
Fig. 6 and therefore their removal helps the proposed
model in both, estimating a better ground truth as well as
modeling other annotators better.

6 CONCLUSION

Several studies employ multiple annotators to model
time series over a continuous hidden (unobserved) vari-
able. The ground truth is often substituted by heuristic
measures over the available ratings, which are later used
for training and evaluating the model. In this work, we
present a novel scheme to model the ratings from multi-
ple annotators using an EM algorithm. Our algorithm
infers the hidden ground truth based on a feature map-
ping function and learns a distortion function for each
annotator. This distortion function is used by the annota-
tor to provide his perception of the ground truth. Evalu-
ation on smile confidence ratings from 28 annotators on
the Rapid-ABC dataset demonstrates that the proposed
model outperforms the baseline cases that substitute
ground truth by computing means over annotator ratings
or only compensate for delays in the annotator ratings.
We further analyze the model parameters and identify
annotator specific traits such as annotator bias and delay.

Our model can be further improved by using schemes
similar to those proposed in multiple annotator modeling
problems over discrete labels [17], [18], [19]. In this work,
we have assumed a specific structure for the feature map-
ping and distortion functions but other formulations can be

tested. The distortion functions from each annotator can
also be investigated to study factors such as annotator simi-
larity and reliability. Similarly investigations on feature
mapping functions may reveal features best suited for the
study. Furthermore, as we pointed out previously, there are
several other complex factors that determine factors such as
annotator bias and delay (e.g., interaction dynamics in the
dyadic conversation, environmental settings). Our model
does not account for such factors and they can be a subject
for future studies to further understand the dynamics of
annotation. Finally, this study may be extended to cases
involving multidimensional time series, involving joint
modeling over each dimension.

APPENDIX
A.1 Derivation of the Expectation Maximization
Algorithm Stated in Section 4

We use an Expectation Maximization framework [15], [50]
to estimate the model parameters and introduce a distribu-
tion qðaas�Þ defined over the hidden ground truth. Following
up from the data log likelihood formulation in (9), the fol-
lowing decomposition holds for any choice of qðaas�Þ (please
refer to section 9.4 in [32]).

L ¼ Mðq;PP; XXsÞ þKLðqjjpÞ: (18)

Where M and KL(qjjp) are functionals of qðas�Þ [32] and
KL(qjjp) specifically refers to the Kullback-Leibler diver-
gence [51] between qðaas�Þ and pðaas�jaas1; . . . ; aasN;PP; XXsÞ as

shown below.

Mðq;PP; XXsÞ

¼
X
s2S

Z
aas�
qðaas�Þlog

�
pðaas1; ::; aasN; aas�jPP; XXsÞ

qðaas�Þ
�
@aas�

(19)

KLðqjjpÞ

¼ �
X
s2S

Z
aas�
qðaas�Þlog

�
pðaas�jaas1; ::; aasN;PP; XXsÞ

qðaas�Þ
�
@aas�:

(20)

An EM algorithm iteratively performs an Expectation
step (E-step) and a Maximization step (M-step). In the
E-step M is maximized with respect to qðaas�Þ while hold-
ing the parameters PP constant. The solution is equivalent
to the posterior distribution pðaas�jaas1; . . . ; aasN;PP; XXsÞ, when

KLðqjjpÞ vanishes [32]. During the M-step, we maximize
M to update the model parameters P ¼ hdd1; . . . ; ddN;
db1; . . . ; d

b
N ; uui. We can simplify the expression in (19)

based on the graphical model shown in Fig. 3. Applying
the multiplication theorem on probability [52], we can
express the joint probability between haas1; . . . ; aasNi and aas�
in Equation (19) conditioned on the model parameters as
shown in Equation (21). A detailed derivation of the rela-
tion in (21) is shown in Appendix A.2.

pðaas1; . . . ; aasN; aas�jPP; XXsÞ
¼ pðaas1; . . . ; aasN; aas�jdd1; . . . ; ddN; db1; . . . ; dbN ; uu; XXsÞ

¼
YN
n¼1

pðaasnjaas�; ddn; dbnÞ � pðaas�juu; XXsÞ:
(21)

Fig. 11. Correlation coefficients r between the true and predicted
annotator ratings based on model trained after removing annotators
27 and 28. A higher r implies that the model is better able to model
the dependencies between low level features and the annotator rat-
ings. For the correlation coefficients obtained using proposed model,
� indicates a significant improvement with p-value < 5 percent, tu
indicates significant improvement with p-value < 10 percent but
greater than 5 percent.
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Based on the above equation, we can rewrite M in Equa-
tion (19) as:

Mðq;PP; XXsÞ ¼ �
X
s2S

Z
aas�
qðaas�Þlog qðaas�Þ@aas�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Entropyðqðaas�ÞÞ

þ
X
s2S

Z
as�
qðaas�Þlog

�YN
n¼1

pðaasnjaas�; ddn; dbnÞ � pðaas�juu; XXsÞ
�
@aas�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M1: Term containing model parameters

:

(22)

Note that M in (22) can be completely defined given
qðaas�Þ, the distortion function h and the feature mapping

function g. In this work, we approximate qðaas�Þ with a point

estimate of aas�. Based on h, we can compute the conditional

probability P ðaasnjaas�; ddnÞ and P ðaas�juu; XXsÞ can be computed

based on g. The distribution entropy term on right hand
side in (22) does not depend on model parameters and we
only need to deal with term M1 during the M-step. Next,
we restate the formulation for the functions g and h in (23)–
(26) as introduced in Section 3.1 along with their probability
distributions. Furthermore, an approximation on qðaas�Þ in

introduced as discussed below.

aas� ¼ g
�
XXs; uu

� ¼ XXs

1

� �T
uu þ ccs (23)

aas� � N
�

XXs

1

� �T
uu; sc � IITs

�
(24)

aasn ¼ hðaas�; ddnÞ ¼ ddn � aas� þ ðdbn � 1sÞ þ ffs
n (25)

pðaasnjaas�; ddnÞ � N
�
ddn � aas� þ ðdbn � 1sÞ; sf � IITs

�
: (26)

In the E-step, qðaas�Þ is set equal to the distribution
pðaas�jaas1; . . . ; aasN;PP; XXsÞ. Instead of exactly computing

pðaas�jaas1; . . . ; aasN;PP; XXsÞ, we sample a point �aas� from this dis-

tribution. The distribution qðaas�Þ is then set equal to this

point estimate from pðaas�jaas1; . . . ; aasN;PP; XXsÞ as shown in (27)

(d is the Dirac-delta function). Several popular algorithms
such as K-means [53] and Viterbi EM for Hidden Markov
Models [54] make this approximation.

qðaas�Þ ¼ dðaas� � �aas�Þ: (27)

We obtain the point estimate �aas� as Maximum Log-likeli-
hood Estimate (MLE) of aas� based on pðaas�jaas1; . . . ; aasN;PP; XXsÞ,
as shown in (28). Subsequently, we rewrite the expression
using multiplication theorem in (29).

�aas� ¼ argmaxaas� log pðaas�jaas1; . . . ; aasN;PP; XXsÞ (28)

¼ argmax
aas�

log

�
pðaas�; aas1; . . . ; aasN jPP; XXsÞ
pðaas1; . . . ; aasN jPP; XXsÞ

�
: (29)

The denominator in (29) does not contain aas� and can be
disregarded during maximization. The MLE can be com-
puted from the equivalent problem:

�aas� ¼ argmax
aas�

log pðaas�; aas1; . . . ; aasN jPP; XXsÞ: (30)

Using Equations (37)-(40), we can write (30) as:

�aas� ¼ argmax
aas�

log
YN
n¼1

pðaasnjaas�; ddn; dbnÞ � pðaas�juu; XXsÞ
 !

¼ argmax
aas�

�XN
n¼1

log pðaasnjaas�; ddn; dbnÞ þ log pðaas�juu; XXsÞ
�
:

(31)

During the M-step, we optimize M1 defined in (22).
Substituting the assumed distribution for qðaas�Þ as stated in

(27),M1 is reduced to

M1 ¼
X
s2S

XN
n¼1

log pðaasnj�aas�; ddn; dbnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term containing filter coefficients ddn

þ
X
s2S

log pð�aas�juu; XXsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term containing mapping

function parameter uu

: (32)

Note that the filter parameters ðddn; dbnÞ and uu appear in
separate terms in the above Equation (32). Hence in the M-

step, hdd1; . . . ; ddN; db1; . . . ; dbNi can be obtained by maximizing

the first term and uu by maximizing the second term alone.
For the sake of completion, we restate the stepwise EM algo-
rithm implementation below.

EM algorithm implementation

� Initialize filter coefficients hdd1; . . . ; ddNi, bias terms

hdb1; . . . ; dbNi and mapping function parameter uu.

� While the data-log likelihood converges, perform:
- E-step: In this step, we obtain the ground truth
estimate �aas� as shown in 31. Substituting Gaussian
distribution functions defined in 7 and 5, we arrive
at the equivalent optimization problem shown in
(33). jj:jj2 represents the L2 vector norm.

�aas� ¼ argmin
aas�

XN
n¼1

����ðaasnÞ � ðddn � ðaas�Þ þ dbn � 1sÞ����2
2

þ
������ðaas�Þ � XXs

1

� �
uu
������2
2
; 8s 2 S

(33)

- M-step: In the M-step, we maximize M1 in 32. As
stated, we can estimate filter coefficients hdd1; . . . ;
ddNi and parameter uu by operating separately on
the two constituent terms. Substituting the Gauss-
ian distributions stated in (7) and (5) in (32), we
obtain the following optimization problems

ddn; d
b
n ¼ argmax

ddn;d
b
n

X
s2S

XN
n¼1

log pðaasnj�aas�; ddn; dbnÞ; n ¼ 1; . . . ; N

¼ arg min
ddn;d

b
n

X
s2S

XN
n¼1

����ðaasnÞ � ðddn � aas� þ dbn � 1sÞ����2
2

(34)

We would like to point out that it turns out that
the joint optimization over the parameters ddn and

dbn can be carried out in one step by reformulating
the convolution and summation as a joint matrix
multiplication. This optimization, however, inv-
olves a matrix inversion. This is a slow operation
and can be replaced by faster methods such as
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gradient descent. The parameter uu is obtained as
follows.

uu ¼ argmax
uu

X
s2S

log pð�aas�juu; XXsÞ

¼ argmin
uu

X
s2S

������ðaas�Þ � XXs

1

� �
uu
������2
2

(35)

A.2. Proof for Equation (21)

To prove:

pðaas1; . . . ; aasN; aas�jPP; XXsÞ
¼ pðaas1; . . . ; aasN; aas�jdd1; . . . ; ddN; db1; . . . ; dbN ; uu; XXsÞ

¼
YN
n¼1

pðaasnjaas�; ddn; dbnÞ � pðaas�juu; XXsÞ: (36)

Proof: Using Bayes theorem, we can write:

pðaas1; . . . ; aasN ; aas�jPP; XXsÞ
¼ pðaas1; . . . ; aasN jaas�;PP; XXsÞ
� pðaas�jPP; XXsÞ

(37)

Now we simplify the joint probability in Equation (37)
using D-separation properties in Bayesian networks [55].

Claim 1: haas1; . . . ; aasn; . . . ; aasNi are mutually independent,
given aas�. Therefore:

pðaas1; . . . ; aasN jaas�;PP; XXsÞ

¼
YN
n¼1

pðaasnjaas�;PP; XXsÞ: (38)

Proof. By the definition of conditional probability,
pðaas1; . . . ; aasN jaas�;PP; XXsÞ implies that aas� is given in deter-
mining the joint probability between haas1; . . . ; aasNi. We
apply “common cause” clause (defined in Section 3.3.1 in
[55]) to the graphical model in Fig. 3. As aas� is given, the
clause implies that haas1; . . . ; aasn; . . . ; aasNi are mutually
independent. tu
Claim 2: aasn is independent of all ddn0 , n

0 6¼ n and huu; XXsi,
given aas�. Therefore:

pðaasnjaas�;PP; XXÞ ¼ pðaasnjaas�; dd1; . . . ; ddN; ds1; . . . ; dsN ; u; XXÞ
¼ pðaasnjaas�; ddn; dbnÞ:

(39)

Proof. The variable aas� is given in determining pðaasnjaas�;
PP; XXÞ. We apply “indirect evidential effect” clause [55] to
the graphical model in Fig. 3 to show that aasn is indepen-
dent of huu; XXsi. Similarly, we apply the “common cause”
clause to show that aasn is independent of all distortion

function parameters ddn0 ; d
b
n0 , n

0 6¼ n not directly connected

to aasn. tu
Claim 3: aas� is independent of the filter parameters hdd1; . . . ;

ddN; d
b
1; . . . ; d

b
Ni, in a probability distribution not conditioned

on haas1; . . . ; aasNi. Therefore:
pðaas�jPP; XXsÞ ¼ pðaas�jdd1; . . . ; ddN; db1; . . . ; dbN ; uu; XXsÞ

¼ pðaas�juu; XXsÞ: (40)

Proof. In case of the conditional probability pðaas�jdd1; . . . ;
ddN; d

b
1; . . . ; d

b
N ; uu; XX

sÞ, the variables haas1; . . . ; aasNi are not
given. We apply “common effect” clause [55] to the
graphical model in Fig. 3. The clause implies that aas� is

independent of the parameters hdd1; . . . ; ddN; db1; . . . ; dbNi. tu
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