
A DICTIONARY APPROACH TO REPETITIVE PATTERN
FINDING IN MUSIC

Hsuan-Huei Shih, Shrikanth S. Narayanan and C.-C. Jay Kuo
Integrated Media Systems Center and Department of Electrical Engineering-Systems

University of Southern California, Los Angeles, CA 90089-2564
Tel: (213) 740-8386, Fax: (213) 740-4651, E-mail: {hshih,shri,cckuo}@sipi.usc.edu

ABSTRACT
A dictionary-based approach for extracting repetitive patterns in
music aiming at music feature extraction and indexing for audio
database management is proposed. In this system, segmentation is
achieved with the tempo information, and a music score is
decomposed into bars. Each bar is indexed to construct a bar
index table. Then, an adaptive dictionary-based compression
algorithm known as Lempel Ziv 78 (LZ-78) is applied to the bar-
represented music scores to extract repetitive patterns. Finally,
pruning is applied to this dictionary to remove non-repeating
patterns and to combine shorter repeating patterns into a longer
one. The LZ78 algorithm is slightly modified to achieve better
results in the current application context. Experiments performed
on a popular music database of MIDI files demonstrated that the
proposed algorithm extracts repeating melodies effectively with a
speed of four times faster compared to the traditional linear
search approach.

1. INTRODUCTION

Techniques for image and video feature extraction, indexing and
retrieval have received a lot of attention recently in image and
video database applications. In contrast, a relatively small amount
of effort has been put into audio feature extraction and audio
database indexing. Audio database management finds
applications in music archiving, special effect sound search in
audio editing, etc. Audio is also an integral part of multimedia
databases, and often contains useful information for effective
multimedia search. Multimedia database management using
multimodal information such as audio, video and text, is an
emerging trend. A better understanding of audio features and
their utilization is an essential step towards creating a complete
multimedia database management system. Within the context of
audio databases, music databases have received considerably less
attention. However, music is a universal concept and language,
and study on how people understand and interact with music is
important.

Some work has been done in music content analysis and database
organization before. Chen et al. [1] proposed a pat-tree approach
to index melodies while Ghias et al. [2] used coarse melody
contours as a key to query a music database. McNab, et al. [7],[8]
used interval contours for interactive music retrieval. Tong and
Kuo [9] considered a hidden Markov model (HMM) method to
model special effect sounds for content-based audio query.
Furthermore, Chen, et al. proposed the string-join approach [3]
and the correlative matrix approach [4] to find repeating patterns
in music. Both these approaches use notes as their basic units.
However, the computational complexity grows rapidly as the

number of notes increases. Moreover, the essential duration
information of each note was discarded in these systems. In
contrast, our proposed system uses bars instead of notes as the
basic unit. It not only captures tempo information of melodies but
can also reduce the size of the input sequence.

In this work, we focus on the extraction of repeating patterns
corresponding to the main melody of a given music piece.
Repeating patterns can be used in organizing and indexing music
databases. They can also serve as an important feature for
content-based retrieval from music databases. Furthermore, they
can be used as a tool for analyzing characteristics and patterns of
music compositions and their composers. It is believed that
people are particularly sensitive and receptive to certain salient
portions in a piece of music. Here, we assume that repeating
melodies constitute such a salient part. It is not uncommon that a
piece of music is composed by certain small pieces of melody
that tend to be repeated throughout the whole piece. Therefore,
people tend to easily memorize repeating melodies. If a piece of
music is written in music score form, repeating melodies in a
piece of music are repeating patterns of notes in its music score.
We use a dictionary approach to find these repeating patterns
based on the classic work of Lempel and Ziv [5],[6].

The rest of this paper is organized as follows. In Section 2, the
proposed algorithm is described in detail. Experimental results
are given in Section 3 and concluding remarks are presented in
Section 4.

2. PROPOSED ALGORITHM
The input to our proposed system is a piece of music consisting
of numerical music scores. Thus, it is assumed that other music
forms such as the sound waves and MIDI files have been first
converted to numerical music scores.

2.1 System Overview
Figure 1 is the functional flow diagram of the overall system. The
two main phases in the system are: data preparation and repeating
pattern extraction. Music decomposition and bar indexing
constitute the data preparation phase. The two main modules in
the repeating pattern extraction phase include modified LZ78
processing and dictionary pruning. The extraction of repeating
patterns is done iteratively. A repeating pattern list is introduced
to store the extracted full-length repeating patterns. A repeating
pattern is said to be of full-length if it is not a proper subset of
any other repeating pattern that has the same frequency count. A
dictionary is generated after each LZ78 iteration and pruned to
remove non-repeating patterns. Moreover, the extracted full-
length repeating patterns are moved into a repeating pattern list.

Shrikanth Narayanan
ICME 2001

The pruned dictionary is passed on to the next LZ78 iteration.
The iteration is terminated when the system converges i.e., when
pruned dictionaries of the current and previous iterations are the
same.
Further details of each of the modules mentioned above are
described in the following sections.

Figure 1. System block diagram

2.2 Music Decomposition and Bar Indexing
The bar (rather than the note) is used as a basic unit in our system
due to the following considerations. First, a music note is too fine
a unit to build a dictionary with since there are too many notes,
and their combinations, in a piece of music and the complexity of
the dictionary building process grows very rapidly. Second, a
note contains pitch and duration information. However, if a note
is used as a symbol to build a dictionary, the duration of a note is
often discarded for simplification. Here, bars are introduced to
preserve the duration information of notes. In music scores, there
are time signatures used to indicate the tempo of the underlying
music, and a single piece of music may contain more than one
time signature. In a music score, bars are used to group notes
together according to a specified time signature. In our algorithm,
bars are chosen to be the basic unit where a group of notes of the
same time period are cascaded.
Usually, several bars form a repeating pattern. However, a
repeating pattern may not start precisely at the beginning of a bar
or stop at the end of a bar. In other words, they may start or stop
at any note in a bar. For a given song, repeating patterns tend to
start and stop at fixed positions in a bar. The intermediate bars
that lie between the starting and the ending bars are exactly the
same. Just the leading and trailing bars of a repeating pattern
require some special handling.
When the bar index table is built, the segmented music score is
also concurrently converted into a bar indexed music score. This
merely implies replacing each bar in the music score with its
corresponding index. Furthermore, we can record pitch values of
consecutive notes in a bar while ignoring their durations and, at
the same time, discard all rest notes to derive another attribute.

Rests at the start, in the middle, or at the end of a bar are treated
the same in the bar matching process. By making this assumption
several different bars which have same number of notes with the
same pitch values will be matched to the same index in the bar
index table. However, it should be noted that such combinations
of notes occur rarely in the same piece of music. A non-trivial
repeating pattern is a sequence of several bars. A single bar
usually does not contribute toward discrimination since it is quite
difficult for people to identify a particular piece after listening to
only one bar. Therefore, one bar is too short to be considered as a
repeating pattern. Music

Decomposition
& Bar Indexing

Modified LZ78

Pruning

Pruning

Converge?

Yes

No

Data
Preparation

Phase

Repeating
Pattern

Extraction
Phase

Repeating
Pattern

Extraction
Iteration

Numerical music score

Repeating pattern list

Music
Decomposition
& Bar Indexing

Modified LZ78

Pruning

Pruning

Converge?

Yes

No

Data
Preparation

Phase

Repeating
Pattern

Extraction
Phase

Repeating
Pattern

Extraction
Iteration

Numerical music score

Repeating pattern list

2.3 Lempel-Ziv 78 (LZ78) and Its Modification

The Lempel-Ziv 78 (LZ78) algorithm is a lossless compression
scheme that has been widely used in text compression. A
dictionary of variable length is constructed and adaptively
updated by LZ78 while parsing a sequence of symbols.
Vocabularies in the dictionary will be added according to the
processed data. In our system, input symbols are bars with an
appropriate index number and vocabularies in the dictionary are
sequences of bar indices. Sequences of bar indices are called
patterns through out this paper. The main idea of dictionary-based
compression is to detect longer vocabulary entries and encode
them with shorter codewords. This process turns out to be a
powerful tool in finding repeating patterns in music. The
dictionary is the place where repeating patterns are accumulated.

“DA” is called the parent pattern of both “DAD” and “DAB”. In
general, to form a parent pattern that is N bars long by using
LZ78 requires that the pattern appears at least N times in the
underlying music. If N is large, it could be difficult to get a long
parent pattern. A long parent pattern is needed for longer
repeating patterns. To overcome this difficulty, we pass the same
music piece through the LZ78 dictionary building system several
times, and the dictionary in each LZ78 iteration is built based on
the previously built dictionary.

Figure 2. The block diagram of modified LZ78

Old word

Read in one new
character

Add the new character to the
old word to form a new word

Yes

Update the
old word
with the
new word

Add the new word
in the dictionary

Update the
old word
with the
null string

Is the new word
in the dictionary?

No

If the character’s
Frequency larger than 1?

Yes

No

Empty old word

Old word

Read in one new
character

Add the new character to the
old word to form a new word

Yes

Update the
old word
with the
new word

Add the new word
in the dictionary

Update the
old word
with the
null string

Is the new word
in the dictionary?

No

If the character’s
Frequency larger than 1?

Yes

No

Empty old word

The flow diagram of the modified LZ78 (MLZ78) is shown in
Figure 2, and explained below.
1. A buffer and a dictionary are needed in MLZ78, and at

the beginning they are both empty. The buffer is referred
to as old/new word.

2. One new character is read in from the incoming data. If
the bar index frequency is 1, empty the old/new word
buffer and start from Step 2 again. Otherwise, go to the
next step.

3. Append the new character to the old word, and it
becomes the new word. There is at least one character in
the new word buffer.

4. There are two cases. (a) If the new word is already in the
dictionary, then this new word becomes the old word
(and nothing is changed in the buffer). Start from Step 2
again. (b) If the new word is not in the dictionary, add
the new word to the dictionary, empty the buffer and
return an empty old word. Then, record the index of
newly added pattern’s parent. Start from Step 2 again.

Patterns in the dictionary may not be repeating patterns, and
furthermore all parents of patterns are also included in the
dictionary. The dictionary will diverge if these non-repeating
patterns and pattern’s parents are not handled properly. Hence,
pruning the dictionary after each modified LZ78 iteration is
essential to have a convergent dictionary, thus enabling easier
extraction of repeating patterns. Details of the pruning techniques
are discussed in the next section.

2.4 Pruning

Figure 3. Flow diagram of the pruning phase

Figure 3 shows a flow diagram of the pruning algorithm. The
pruning phase has three stages: repeating pattern verification,
repeating pattern extraction, and pattern elimination. In the first
stage, repeating pattern verification, the repetition of each pattern
is verified by using the bar indexed music score. Although the
proposed modified LZ78 tries to eliminate the problem of having
non-repeating patterns in the dictionary, some non-repeating
patterns may still appear in the dictionary. The main reason for
this phenomenon is a bar index that is not a part of any repeating
patterns may have multiple appearances in a piece of music.
These appearances typically occur in isolated places and the
modified LZ78 algorithm has no way of detecting this problem.
Since the dictionary converges, the time required for checking
repetitions will not grow as the number of modified LZ78
iterations increases. All patterns in the dictionary will be checked
for their repetition, while at the same time the frequency attribute
in the dictionary will be updated.

In the repeating pattern extraction stage, full-length repeating
patterns will be extracted and moved from the dictionary to a
repeating pattern list. A subset of a full-length repeating pattern
may have a higher frequency than the full-length repeating
pattern. Then, this subset may be another full-length repeating
pattern if it is not a proper subset of other repeating patterns that
have the same frequencies. All entries in the repeating pattern list
are full-length repeating patterns. A threshold will be set to tell
the system what the minimum length of a pattern should be for it
to be considered as a repeating pattern. There are two ways in

arriving at repeating patterns. One is by detecting non-repeating
patterns, and the other is finding patterns that stop growing after
several modified LZ78 iterations. For the first case, a pattern of
length N is not a repeating pattern but its parent patterns of length
N-1 must be repeating patterns. Otherwise, the non-repeating
patterns will not be able to extend to length N. Since the
dictionary keeps track of each pattern’s parent. Then, extracting a
full-length repeating pattern from the dictionary becomes
straightforward. For the second case, since repeating patterns are
terminated by indices that have frequencies equal to 1, these
patterns will not grow any longer, and can be left until the end to
be extracted. Therefore, a final pruning step will be applied right
before the system returns a repeating pattern list.

In the pattern elimination stage, non-repeating patterns are
removed from the dictionary. Patterns of length equal to one are
also removed. Extracted repeating patterns are also removed.
Moreover, proper subsets of an extracted full-length repeating
pattern will be eliminated as well. Since some patterns are
removed from the dictionary, the indices of patterns will be
reordered in the pruned dictionary. The consistency of parents’
indexes will be updated in the pruned dictionary. Then, this
pruned dictionary will be used in the next MLZ78 iteration, until
the pruned dictionary stops changing with respect to the previous
pruned dictionary.

Repeating
Patterns

Verification

Repeating
Patterns

Extraction

Pattern
Elimination

Dictionary
From LZ78

Pruned
Dictionary

Repeating Pattern
List

Repeating
Patterns

Verification

Repeating
Patterns

Extraction

Pattern
Elimination

Dictionary
From LZ78

Pruned
Dictionary

Repeating Pattern
List

3. EXPERIMENTAL RESULTS

3.1 Experiment Setup and Example

1 BarTime signature 1 BarTime signature

69 70 72 69 67 69 65 69 69
E F H E C E A E E

67 65 62 62 69 69 67 69 70 72 69 67 69
C A > > E E C E F H E C E

65 69 69 67 65 62 62 69 69 67 69 70
A E E C A > > E E C E F

4
4

Pitch number in MIDI
ASCII Character

69 70 72 69 67 69 65 69 69
E F H E C E A E E

67 65 62 62 69 69 67 69 70 72 69 67 69
C A > > E E C E F H E C E

65 69 69 67 65 62 62 69 69 67 69 70
A E E C A > > E E C E F

69 70 72 69 67 69 65 69 69
E F H E C E A E E

67 65 62 62 69 69 67 69 70 72 69 67 69
C A > > E E C E F H E C E

65 69 69 67 65 62 62 69 69 67 69 70
A E E C A > > E E C E F

4
4

Pitch number in MIDI
ASCII Character

Figure 4. The First nine bars of the music score of
“Yellow Submarine”

We collected 200 MIDI files of the seventies' and eighties' pop
music genre from the public domain to form our database. The
system was implemented in VC++ on an Intel PC. According to
the time signature information in the MIDI file, we segmented
numerical music scores into bars and then applied our algorithm
to the bar representation. For illustration, we will use the piece
"Yellow Submarine" by Beatles as an example. Figure 4 shows
the first nine bars of Yellow Submarine in music scores and the
numerical pitch values are specified under each note (the pitch
values are obtained from the MIDI file). After converting the
music score to the numerical music score, it is segmented into
bars according to the time signature, which is 4/4 for Yellow
Submarine. Then, the decomposed numerical music score is used
to build a bar index table and converted into bar indexed music
score based on the bar index table.

The left part of Figure 5 shows the entire bar indexed music
score. We applied the modified LZ78 to the bar indexed music
score and pruned the dictionary over several iterations until the
dictionary finally converged. The dictionary of this example
converged after 15 iterations. The threshold for the minimum
length of a repeating pattern was set to 3. Finally, the algorithm
extracted 5 repeating patterns as shown in the right part of Figure
5.

Figure 5. Bar index music score of Yellow Submarine
(left) and the final result of repeating patterns in Yellow
Submarine (right).

3.2 Experimental Result Analysis

Table 1. Statistical information of tested songs

The number of extracted repeating patterns was found to vary
across different songs. Some songs tended to have more repeating
patterns than others. The length of repeating patterns also varied
across songs. The number of segmented bars of a piece of music
is dependent of the length of the input music. However, the bar
index table of a piece of music will be dependent on the nature of
the piece of music. In our system, we only set the minimum
length threshold since very short repeating patterns were not
deemed to be important. Some non-trivial (i.e., lengthy) repeating
patterns may be extracted from a music piece. However,
repeating patterns that may be embedded within a full-length
repeating pattern are difficult to be extracted. In our example, in
Figure 5 on the right, the pattern “7:8:8” happened two times in
pattern number 3. In fact, a repeating pattern in a full-length
repeating pattern may or may not sound as a complete repeating
melody, since only certain combinations of notes can be used to
end a melody. Therefore, the proposed system is used only to
extract full-length repeating patterns. Table 1 shows the statistical
information of tested songs. As seen in Table 1, some repeating
patterns end up being very long after pruning. For example, Hotel
California by Eagle has only two very long repeating patterns that
are truly the two main melodies as confirmed by informal
listening.

4. CONCLUSION AND FUTURE WORK

A dictionary-based approach was developed to find repeating
patterns for music feature extraction and indexing. It was shown
with experimental results that the proposed method could detect
repeating patterns in music effectively.

In the future, we would like to continue our work on efficient
pruning techniques for the proposed dictionary approach to
enhance obtained results. Further improvement of the modified
Lempel Ziv 78 (MLZ78) will also be carried out to give a better
intermediate result for pruning. Also, since MIDI files are used as
input to our system, the bar representation used for pattern
extraction is unambiguous. However, when a piece of music is
either played or sung by people, we have to convert the acoustic
waveform to the bar representation in a preprocessing step. This
demands robust signal processing techniques. Besides, since the
bar representation may not be as accurate as that obtained from
MIDI files, we have to develop a matching process that permits a
certain level of error tolerance. This may require statistical
approaches to music pattern extraction.

0 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 :
1 : 2 : 5 : 6 : 7 : 8 : 8 : 9 : 7 : 8 : 8 :10 : 1 :
2 : 5 : 4 : 1 :11 : 7 : 8 : 8 : 9 : 7 : 8 : 8 :10 :
1 : 2 : 5 : 4 : 1 : 2 : 5 : 6 : 7 : 8 : 8 : 9 : 7 :
8 : 8 :10 : 1 : 2 : 5 : 4 : 1 : 2

Bar indexed music score List of repeating pattern

1. 1:2:3:4:1:2
2. 4:1:2:3
3. 7:8:8:9:7:8:8:10:1:2:5:4:1:2
4. 1:2:5:6:7:8:8:9:7:8:8:10:1:2:5:4:1
5. 4:1:2:5:6

0 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 :
1 : 2 : 5 : 6 : 7 : 8 : 8 : 9 : 7 : 8 : 8 :10 : 1 :
2 : 5 : 4 : 1 :11 : 7 : 8 : 8 : 9 : 7 : 8 : 8 :10 :
1 : 2 : 5 : 4 : 1 : 2 : 5 : 6 : 7 : 8 : 8 : 9 : 7 :
8 : 8 :10 : 1 : 2 : 5 : 4 : 1 : 2

Bar indexed music score List of repeating pattern

1. 1:2:3:4:1:2
2. 4:1:2:3
3. 7:8:8:9:7:8:8:10:1:2:5:4:1:2
4. 1:2:5:6:7:8:8:9:7:8:8:10:1:2:5:4:1
5. 4:1:2:5:6

1522122117Hotel
California

5462452500 miles

5342755All I have to
do is dream

175151259Yellow
Submarine

Max.
repeating
pattern
Length

NO. of
repeating
patterns

NO. of
MLZ 78
iterations

Bar
index
table
Size

NO. of
bars

Title

1522122117Hotel
California

5462452500 miles

5342755All I have to
do is dream

175151259Yellow
Submarine

Max.
repeating
pattern
Length

NO. of
repeating
patterns

NO. of
MLZ 78
iterations

Bar
index
table
Size

NO. of
bars

Title 5. REFERENCES
[1] A. L. P. Chen, and C. C. Liu, “Music databases: indexing

techniques and implementation”, Proceedings IEEE Intl.
Workshop on Multimedia Data Base Management
Systems.1999.

[2] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. “Query
by humming: musical information retrieval in an audio
database”, Proceedings of ACM Multimedia Conference’95,
San Francisco, California, November 1995.

[3] C. C. Liu, J. L. Hsu and A. L. P. Chen, “Efficient theme and
non-trivial repeating pattern discovering in music
databases,” Proc. IEEE International Conference on Data
Engineering. 1999.

[4] J. L. Hsu, C. C. Liu and A. L. P. Chen, “Efficient repeating
pattern finding in music databases,” Proc. ACM Seventh
International Conference on Information and Knowledge
Management (CIKM). 1998.

[5] J. Ziv and A. Lempel,. “A universal algorithm for sequential
data compression,” IEEE Transactions on Information
Theory, Volume 23, Number 3, September 1977, pp. 337-
343.

[6] J. Ziv and A. Lempel, “Compression of individual sequences
via variable-rate coding,” IEEE Transactions on Information
Theory, Volume 24, Number 5, September 1978, pp. 530-
536.

[7] R. J. McNab, Interactive Applications of Music
Transcription, Master's thesis, Department of Computer
Science, University of Waikato, New Zealand, 1996.

[8] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson,
and S. J. Cunningham, “Towards the digital music library:
Tune retrieval from acoustic input,” In Digital Libraries
Conference, 1996.

[9] T. Zhang and C.-C. J. Kuo, Content-based Audio
Classification and Retrieval for Audiovisual Data Parsing,
Kluwer Academic Publishers, 2001

	INTRODUCTION
	PROPOSED ALGORITHM
	System Overview
	Music Decomposition and Bar Indexing
	Lempel-Ziv 78 (LZ78) and Its Modification
	Pruning

	EXPERIMENTAL RESULTS
	Experiment Setup and Example
	Experimental Result Analysis

	CONCLUSION AND FUTURE WORK
	REFERENCES

