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ABSTRACT 
Transcription from audio to musical representation is a 
challenging problem for Query by Humming (QBH) systems. In 
this paper, we propose a two step note transcription process 
consisting of an algorithm that uses a speech recognizer for note 
segmentation followed by signal processing for robust location 
and capture of pitch and duration in the humming audio input. In 
contrast to most Hidden Markov Model based approaches to QBH 
systems that model and classify humming into a single universal 
model, we designed a flexible speech recognizer that allows 
different types of humming sounds in the input for providing 
efficient and accurate note segmentation and transcription. We 
use novel statistical energy and pitch analyses to correct potential 
insertion and deletion errors to augment the system’s 
performance, and evaluate our algorithm with precision and recall 
tests. Using a large database previously amassed, we test various 
system configurations, providing results for note segmentation 
with and without the proposed augmentations. The augmented 
system robustly recognizes the location of humming notes with a 
precision and recall F measure of 0.84. As a second validation, 
we use the results of the transcription system in melody retrieval 
and found, for a database of 1000 melodies, a 76% retrieval 
accuracy with automatically extracted queries, and a 83% 
retrieval performance with manually transcribed queries. 
Sensitivity analysis shows that, while it is possible to locate the 
position of the hummed notes accurately, incorrect segmentation 
results can have a negative effect in the retrieval performance of 
the QBH system. 

Categories and Subject Descriptors 
H.5.5 [Information Interfaces and Presentation]: Sound and 
Music Computing – Methodologies and techniques; Signal 
analysis, synthesis, and processing    

General Terms 
Measurement, Performance, Experimentation, Human Factors, 

Keywords 
Query by Humming, HMM based transcription, Retrieval  

1. INTRODUCTION 
Music Information Retrieval (MIR) is rapidly gaining attention 
among researchers in a wide range of areas including signal 
processing, media technologies, databases, human factors, and 
interactive music application. Technology progress, such as that 
in storage capacities of web servers, makes MIR even more 
attractive, since the Internet is one of the main resources for 
multimedia data mining today. Various kinds of audio retrieval 
technologies have been implemented for easy access to the 
desired music data [16]. Query-by Humming (QBH) is one of 
these ongoing MIR research technologies, which is becoming 
increasingly popular and more sophisticated. The main goal of 
QBH systems is to take human humming audio as input, and use 
it as a query to retrieve music from a database as accurately as 
possible. 

In this paper, the problem of melodic transcription and 
representation in the front end of QBH Systems is discussed. Each 
humming unit represents a single note in a melody. One of the 
main goals of the front-end system is to provide correct 
segmentation of the humming notes one from another. After 
segmentation, the pitch and duration values for each segmented 
note can then be extracted. We propose a two-stage note 
transcription process comprising of first, an algorithm that uses a 
speech recognizer for note segmentation and, then signal 
processing techniques for precisely extracting pitch and duration 
information. This transcription process allows for multiple 
humming syllable types in various forms, which is typical of real 
world humming data, and incorporates post-processing using 
pitch and energy features to enhance system performance. 

Here, we provide justification for the use of a speech recognizer 
for note segmentation. Humming can be defined as the 
reproduction of a melody without the words. Instead of the lyrics, 
fixed syllables such as /Da/, /Na/, /Ta/, /Ra/ and their different 
pronunciations are used. The main difference in salient feature 
sets between spontaneous speech syllables and humming units is 
the pitch and duration structure. The duration of the notes in the 
humming sequence (depending mainly on the tempo of the 
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humming) is more likely to be longer than the syllables used in 
spontaneous speech. On the other hand, since each humming unit 
represents a music note, the pitch in the hummed notes tends to be 
more stable, while pitch in spontaneous speech may vary with 
expressiveness. Since the duration and the pitch contour 
characteristics are the only differences, and these differences do 
not significantly affect speech recognition performance, humming 
can be considered ”meaningless” (non-lexical) speech for the 
purposes of humming unit (note) segmentation. This suggests that 
adopting an automatic speech recognizer for locating hummed 
notes in the input query could be a feasible approach for 
segmentation. Admittedly, there exist alternative methods to using 
a speech recognizer to detect note onsets, such as through analysis 
of the short-term energy profile. But these methods are not robust 
as standalone techniques. 

 
Figure 1. Proposed Note Segmentation Algorithm 

 

Figure 1 shows a diagram of our proposed note transcription 
system. In order to perform correct note segmentation, we design 
a robust Hidden Markov Model (HMM) based speech recognizer. 
The speech recognizer’s task is to perform pre-segmentation by 
using statistical time-series note models. In the recognizer, we 
create 4 general models for different types of humming syllables 
that can be expected in humming audio. Our lexicon (dictionary 
used in the recognizer) groups the humming syllables into main 
categories with respect to their linguistic structures for accurate 
recognition. We train the generic humming models with available 
speech data corpora (see Section 2), and a “language” (note 
sequence) model with transcribed real world humming data. The 
output of a phoneme-level speech recognizer is post processed 
with energy and pitch features to detect the humming note 
boundaries. It is then segmented into audio chunks that 
correspond to the detected humming notes. 

Finally, we evaluate the segmentation performance of the system 
with precision and recall (F measure) analysis. We also use the 
output of the recognizer for melody retrieval experiments in order 
to investigate how segmentation errors impact the performance of 
QBH systems.  

1.1  Related Work 
In this section, we describe the melodic transcription and 
representation schemes adopted in previous QBH systems. Only 
very few articles provide details on note transcription techniques. 

Hence a large part of the literature review focuses on the melodic 
representation schemes employed in these QBH MIR systems. 
The transcription method proposed in this paper can be used as a 
front-end module for many of the QBH systems invoked in this 
section. 

Ghias et al. [1] has been credited as one of the first to propose a 
QBH system that converts audio into melodic contour 
representation. The contour representation has been used widely 
by many QBH systems that followed. Ghias used autocorrelation 
for pitch tracking in order to encode the audio into a 3 level 
alphabet of pitch contours (U, D and S). McNab et al. [2], [3] 
introduced the duration concept into the melodic representation 
scheme. Tree based search techniques have been used by Roland 
et al. [4] and Blackburn et al. [5] as an improvement to McNab’s 
system, in order to get better and more efficient retrieval results. 
Jang et al. [6] expanded the 3 level alphabets to one using the 
semitone (half step) distance measure. Kosugi et al. [9] applied 
Euclidian Distance search in a system in which the input and 
database elements are segmented into fixed length windows. In 
later studies, Kosugi et al. [10] tested the fixed length 
transcription technique and the Euclidian Distance, using tone 
transition and tone distribution features. Hu et al. [7] also used 
fixed sized frames in melody transcription, noting that windowing 
handles the errors of transcription, transposition invariance, 
overall tempo difference, and local tempo variation. 

Shih et al. [11] used HMM’s for note segmentation in the front-
end of a QBH system. Clarisse et al. [8] first evaluated existing 
transcription systems, such as those by Meldex, Pollastri, 
Autoscore, etc. Observing that these systems are not adequate for 
human level performance, Clarisse et al. constructed an Auditory 
Model based transcription system for the front-end of their QBH 
systems. 

In Cuby-Hum, Pauws [12] designed a new transcription technique 
that processes the input in terms of energy and pitch to detect note 
onsets and locations, and quantizes the input into semitone 
representations. Pauws then used Dynamic Programming to align 
query and database elements in the retrieval side of the system.  

Pardo et al [13] tried two different similarity measurement 
techniques for the hummed queries. The first approach estimated 
the distance between the target melodies and the database entries 
using an edit measure. In the second approach, target melodies in 
the database were represented as HMM’s, and the input is 
represented as observation sequences. A target is judged similar to 
the query if the HMM representation likely produces the query. 

As a supporting study to QBH system design, we collected a large 
database of humming samples from 100 different people and 
statistically analyzed and categorized the uncertainty present in 
the human production of humming [14]. We also introduced a 
new retrieval technique that extracts finger prints from indexed 
audio input for efficient search in QBH systems in the case of 
perfect transcription [15]. Various system solutions described 
above are summarized in Table 1. 

 

HMM 
Based  
Recognizer  

Pitch and 
Energy based 

Post-
Processing 

 
Transcription  

Evaluation Lexicon Language  
Model 

Segmentation 
Experiments 

Melody  
Retrieval 
Experiments
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Table 1. Summary of milestone QBH systems (Symbols 
describe pitch contour properties: U- up, D-down, S-same) 

Authors  Representation  Search and Retrieval  
Ghias  Pitch contour(U,D,S)  String Matching  
McNab  Pitch contour(U,D,S) 

and duration  
String Matching  

Roland and 
Blacburn  

Pitch contour(U,D,S)  Tree Based Search  

Jang  Pitch contour in 
semi-tones and 
duration  

Dynamic Programming  

Kosugi,  
Hu  amd 
Zhu  

Fixed length window 
pitch info  Dynamic Programming  

Shih  HMM contour ratios  
based pitch and 
duration  

Tree based search  

Pauws  Midi Representation  DTW, Edit Distance 

Pardo Midi Representation, 
HMM’s 

Edit Cost, Likelihood 

As seen from the Table 1, all proposed systems use a specific way 
to represent the audio input signal. Psychoacoustic research 
suggests that music is mentally perceived as relative pitch and 
duration contours of sound sequences. Not only does the ability 
for music production by humans, but also their ability for melody 
identification, is highly influenced by the way they perceive 
music [20]. Hence, as a first step, a robust way for extracting the 
pitch and duration of humming notes from the audio input needs 
to be implemented. This, in turn, means that the humming notes in 
the audio input have to be segmented as accurately as possible. A 
problem that pervades all QBH systems mentioned above is how 
one can accurately transcribe the audio input into the desired 
melodic representation. Since our proposed transcription system is 
designed to be robust against variability in humming, it can be 
used by most of the QBH systems as a front-end module for 
performing accurate audio to symbol transcription.   

The remainder of the paper is organized as follows: Section 2 
describes how the HMM-based approach is adopted from speech 
recognition and adapted for use in the segmentation of humming 
notes. Section 3 describes the segmentation performance 
evaluation in our experiments. Section 4 reports on comparisons 
of the retrieval performance of the proposed automatic note 
segmentation algorithm against that of expert human 
transcription. Section 5 concludes with some discussion and 
possible future directions.  

2. FRONT END HUMMING RECOGNIZER 
We invoke speech recognition technology for extracting note 
boundaries from a hummed query, followed by post-processing to 
clean up the speech recognizer's output and determine pitch. 
Speech recognition technology has been employed in a variety of 
applications; a detailed review can be found in [21].  

This section presents details on the design of the humming 
recognizer system. Section 2.1 describes the adaptation of a 
speech recognizer for our purposes of note segmentation in the 
QBH context, and Section 2.2 our techniques for post processing 
the speech recognizer output to handle insertion and deletion 
errors. 

2.1 Speech Recognizer 
We developed a phoneme level speech recognizer using the Sonic 
[17] speech recognition system. Phonemes are mapped to 
syllables that represent humming notes. The syllable set was 
limited to those frequently encountered in real-world humming 
data. The statistical properties of a hummed note vary with the 
syllable used to sing the note.  For this reason, statistical HMM 
models are selected to represent the different hummed notes and 
compensate for this variety. Instead of trying to estimate optimal 
parameters for a hand-built model for direct onset detection from 
energy and pitch, statistical approach is mostly preferred.    

Mel frequency cepstral coefficients (MFFC ’s) are the feature set 
for the statistical models, which are commonly used in speech 
recognition [21]. Four generic syllable model types, denoted by 
/Da/, /Ta/, /Na/, /Ra/, were defined in the lexicon, where each 
model represents a single type of consonant that is expected at the 
beginning of a hummed note (/Da/: voiced stops (b, c, d, g, etc…), 
/Ta/: unvoiced stops (p, t, k, etc…), /Na/: nasals (m, n), and /Ra/: 
liquids (l, r)).The lexicon also includes the different types of 
vowels (AA, AH, IH, AE) that are expected to follow the 
consonant to form the hummed syllable. The 4 generic syllable 
models provided in the dictionary aim at allowing all different 
types of syllables that can be used by the human subjects 
regardless of the consonant at the beginning of the humming 
syllable. The lexicon we used is summarized Figure 2.  

Figure 2. The syllable lexicon used by the automatic 
segmentation 

 
To obtain a good estimation of the statistical properties of the 
vocal sounds, considerable amounts of training data are needed. 
To bootstrap the models, the training was done using large 
corpora of read speech data (TIMIT, Wall Street Journal) that 
provided adequate coverage for the various phonemes. A bi-gram 
note sequence model was developed using the CMU Language 
Modeling Toolkit [18], from a set of transcribed humming data. 
Such a “language” model derived from real data transcription is 
believed to help in the cases, where different combinations of the 
note models may represent frequently occurring rhythmic 
structures such as /Da-/Na-/Na (1/2- 1/4-1/4 beats) and /Ta-/Ra-
/Na-/Na (1/4-1/4-1/2-1/2), which were observed in our humming 
samples. These patterns indicate the subjects’ preference for 

Syllable Consonant Phoneme   

DA D  IX (Voiced Stops) 
 D  AE 
 D  IH 
 …  .... 
TA T  IX (Unvoiced Stops) 
 T  AE  
 …  … 
RA R  IX (Liquids) 
 R  AE  
 ...  ... 
 L  IX 
 L  AE 
 ...  ... 
NA N  IX (Nasals) 
 N  AE 
 N  IH 
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humming patterns, and bias the frequency of some specific 
models so that the probability of one humming note model 
following the other may differ. Under such circumstances, a 
language model could be helpful in improving the performance of 
the segmentation. 

The figure (Figure 3) below shows a spectrogram of a typical 
humming input, with the output of the recognizer superposed as 
note labels. As can be observed in Figure 3, each note is labeled 
with one of the note models that are supplied in the lexicon. (SIL 
indicates a model for silence.)  

 
Figure 3. The output of the recognizer 

Since the goal is to obtain accurate note segmentations, the 
precise identity of the hummed syllable is not critical; the only 
errors that affect transcription results are the note boundary errors. 
These errors can be considered deletions and insertions. An 
insertion error occurs when the recognizer defines a note 
boundary when, in fact, it does not exist in the input melody (see 
Figure 4.a). Conversely, a deletion error can be defined as a 
humming note that is not detected by the recognizer, and 
connected to the previous or next note (as shown in Figure 4.b). 

 

Figure 4. a) Deletion: a note boundary is omitted by the 
system 

 
Figure 4. b) Insertion: an extra note is introduced by the 
system 
 

2.2 Post Processing: Energy and Pitch 
Analysis 
Information obtained from the recognizers can contain errors, 
such as note insertions and deletions. To handle these errors, after 
the recognizer performs the initial segmentation, energy and pitch 
analyses are applied to the output of the recognizer. We have 
experimentally determined that the order of sequence of the 
energy and pitch analysis processing blocks does not significantly 
change the segmentation results. 

2.2.1 Short-term Energy Analysis 
For each segmented humming note, the signal is windowed into 
frames of 20ms, with a shift of 10ms, which creates a 50% 
overlap between consecutive analysis frames. For each frame k, 
the short-term energy is calculated as  

∑
=

=
N

m
k myE

1

2)( ,  (1) 

where N is sampling rate × 0.02. For the energy vector E, an 
adaptive threshold value Te is defined by the product of the 
median value of E’ (non-zero elements of the Energy vector E), 
and a constant α which was calculated from a development set. 
Values in E, greater than the threshold are quantized to 1, and the 
values smaller than the threshold are quantized to 0. An onset is 
detected if a 1-to-0 transition is followed by a 0-to-1 transition. 
The onset is positioned at the 0-to-1 transition point. The offset of 
the first note is given by the time of the 1-to-0 transition, while 
the offset of the second note is already defined by the recognizer. 

Figure 5. a) Deletion b) Short-term energy analysis c) Energy 
Quantization d) Onset detection 

A deletion error in the recognizer output where two notes are 
concatenated and considered a single note is a common one. As 
shown in Figure 5, Short-term Energy Analysis is capable of 
detecting these errors using the aforementioned algorithm. When 
an onset is detected, the recognizer’s output is updated with the 
new information. 

2.2.2 Pitch Analysis 
Pitch tracking for the hummed signal is performed using a 
standard pitch detection algorithm with the PRAAT software [19]. 

  DA NA DA DA SIL DA 

TA:  Inserted 

 Boundary 

 

DA:  Deleted 
Boundary  
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The extracted pitch was stored in a vector P. For each segment, 
the gradient of P was calculated and compared to a threshold 
value Tp, which was estimated using a development set. Values 
that fall between the threshold regions are quantized to 0 and the 
rest are set to 1. An onset is determined when a 0-to-1 transition is 
followed by a 1-to-0 transition (see Figure 6). The onset is 
positioned at the time of the 1-to-0 transition. 

 
Figure 6. a) Deletion b) Pitch contour t c) Gradient vector, 

and threshold region d) Pitch Quantization e) Onset detection 
 
After the segmentation is finalized, each note segment is assigned 
a single pitch value. Pitch doubling errors are corrected within 
each segment by searching for 1 octave differences in the max 
and min values of the vector P. In the case when pitch doubling is 
detected, the closest one of either max or min values to the 
median value is labeled as the true pitch value of that segment. If 
no doubling is detected, the median of P is assigned to that 
particular segment. The duration of the hummed notes are 
obtained directly from the extracted note boundaries as the 
difference between the detected offset and onset. 

3. EXPERIMENT 1: SEGMENTATION 
VALIDATION 
The aforementioned note segmentation method was tested with 
200 actual humming samples obtained from 50 people spanning a 
variety of music backgrounds. The database was collected in our 
previous studies, as reported in [14]. Subjects were asked to use a 
stop-consonant syllable of their own choice for the humming. 
This selection was not strict that, most of the subjects preferred 
switching between different types of syllables during the 
humming of a single melody.  

Two well known melodies, “Happy Birthday” and “London 
Bridge is Falling Down”, were selected as the target melodies for 
this particular study.  

The actual humming database includes around 2500 humming 
samples of 100 people with various musical backgrounds, from 
those having no musical background at all to having 25+ years of 
professional practice. We analyzed the subject’s performance 
against different criteria such as the performance of humming 
during higher intervals vs. lower intervals, the affect of familiarity 
to the target melody on humming performance, etc [14].  

Reference transcriptions for the hummed samples were created 
manually by an experienced music student. Each manual 
transcription was compared to the automatic transcription of the 
proposed front-end recognizer to evaluate the recognizer’s 
performance. Standard Precision (PRC) and Recall (RCL) 
measures are used to evaluate the segmentation performance of 
the system. These measures are defined as follows: 

 

=PRC      (2) 

 

=RCL       (3)  

 

It is usually desirable to have a single evaluation value for such 
systems, instead of two distinct measures. In this case, the F 
measure is used. The F measure is a number representing the 
compound information of precision and recall that can be 
modified through appropriate weighting. The definition is of the F 
measure is as follows: 

RCLPRC
RCLPRCF

+
××

=
2

    (4) 

A time threshold value  TΔ   is also proposed in order to define 
the location of a correct segmentation or boundary. A 
hypothesized boundary t is defined as correct if it lies within the 
time interval TttTt Δ+<<Δ− 00 , where 0t  is the correct 

boundary. In this study, TΔ is empirically chosen to be 75 ms 
(10 % of the average note length in the test dataset). Tp and Te 
values were estimated by using the same held out humming 
sample dataset. 

Tests were run for 10 rounds. In each round, 10% of the data was 
randomly selected, and the values of Tp and Te (defined in 
section 3.2) that maximizes the F measure were calculated. These 
values of Tp and Te were then used in the tests of the remaining 
90% of the data and an F measure for that particular round was 
calculated. After the 10 rounds were completed, results were 
averaged. Table 2 shows the final results. 
 

Table 2. Precision and recall results and relative error 
improvement 

 F  1 − F  Error Improvement  

Energy + Pitch  0.67  0.33  - - 

Speech Rec.  0.79  0.21  36% - 

Speech Rec.+ 
Energy + Pitch  

0.84  0.16  51% 23% 

 
F values for 3 experiments were calculated. The first set of 
segmentation experiments was performed with only energy and 
pitch analyses. The second set of experiments was performed with 
only the automatic segmentation (just the recognizer), and the 
third and last set of experiments was conducted using the full 
system, recognizer plus energy and pitch analyses. The final F 
value for the full system was found to be 0.84, which shows a 

   Number of Correctly Found Boundaries 

      Number of Hypothesized Boundaries 

   Number of Correctly Found Boundaries 

     Total Number of Boundaries 

41



51% error improvement over Energy and Pitch, and 23% error 
improvement over the recognizer only performance. 

4. EXPERIMENT 2: MELODY 
RETRIEVAL 
Even though the proposed segmentation algorithm performs 
efficiently, the data itself contains uncertainty caused by 
variability in the humming abilities of different individuals. The 
details of user dependent uncertainty in humming have been 
discussed in detail in our earlier publication [14]. In that analysis, 
we showed that uncertainty in humming can be caused by reasons 
such as the subjects’ musical background, familiarity with the 
melody, and ability to perceive and/or reproduce music. Because 
of these reasons, the audio that is produced by the subject, in the 
form of humming, can often carry incorrect pitch and duration 
information, and this incorrect reproduction may sometimes cause 
the melody to sound different than it should.  

To further investigate the effect of user dependent uncertainty and 
system dependent transcription errors, retrieval experiments were 
performed for the same set of 200 humming samples that we used 
for the segmentation performance analysis. 200 humming samples 
were distributed equally between musically trained and non-
trained subjects. 

The finger printing technique based on pitch intervals and 
duration features that was proposed in [15] is used in this search 
and retrieval exercise, using a database of 1000 melodies. Fixed 
length pitch and duration contour information packages are 
extracted at certain parts of the hummed melody where the 
highest and lowest pitch transitions and duration ratio changes are 
occurred. For full description of the retrieval engine, please refer 
to [15]. 
 

Table 3. Retrieval Results for the manual and automatic 
transcriptions 

Retrieval  Manual 
Transcription  

Proposed 
Automatic 
Transcription  

Only 
Energy+ 
Pitch 

top of the list  83%  76%  63% 

within top 5  88%  83%  71% 

 

Table 3 above shows the retrieval performance of our QBH 
system using both manually and automatically transcribed 
queries. Retrieval performance is measured by whether or not the 
system can match the input to the correct melody in the database. 
Usually MIR systems give a list of candidate melodies as the 
output. Two types of retrieval measures are proposed. The first 
row in the table shows the retrieval measure when the intended 
melody is at the top of the result list, and the second row shows 
the measure when the melody is found within the top N selected 
songs (N=5 in this case). 

By inspecting Table 3, one can compare the retrieval performance 
of the system for manual and automatic transcriptions. With 
manual transcription, 83% retrieval performance is achieved. As 
expected 91 of the correctly retrieved queries are from musically 
trained subjects, and the remainder 75 are from non-trained 
subjects. This is consistent with our previous finding that a non-
trained subject’s humming contains more user dependent 

uncertainty than that of a trained subject. Even if one expected a 
musically trained subject’s humming to be clear and accurate, the 
various sources of uncertainty may be sufficient to change the 
characteristics of the melody, resulting in mismatches in retrieval. 
This is perhaps why 100% retrieval accuracy is so illusive. 

For the case where the audio to melodic symbol transcription is 
performed automatically, 76 percent of the input samples are 
retrieved correctly. Here, 83 of the correctly retrieved queries are 
from musically trained subjects and the rest, 69 samples, are from 
non-trained subjects. The performance decrease between the 
manual and automatic transcription can be attributed to the 
system’s failure to accurately transcribe the audio into the desired 
melodic representation. Like user dependent uncertainty, system 
errors such as insertion and deletions during the note 
segmentation process can change the characteristics of the input 
query so that mismatches occur.  

In the last column of the Table 3, retrieval results of the system 
using only pitch and energy analysis for the front-end is 
presented. Results report around 35% melody retrieval 
performance improvement when the front-end of the system is 
enhanced with the proposed HMM based transcription.  

5. CONCLUSIONS AND FUTURE WORK 
In this paper, the problem of automatic transcription of audio 
input to symbolic representation for use in a QBH system is 
discussed. A speech recognizer is used to extract the hummed 
notes, and its output is further refined by pitch and energy 
analysis. Precision, Recall and the F measures were calculated to 
measure how correctly the note boundaries are located, given a 
time threshold TΔ . A dataset of 200 humming files was used. 
With TΔ  set to 75ms, an F measure of 0.84 was obtained. The 
output of the proposed system was also used in the context of 
retrieval performance analysis. The retrieval engine performed 
with 76% accuracy using the automatic segmentation output, 
where the accuracy is defined as finding the correct match at the 
top of the result table. In comparison, the manual transcriptions of 
the same dataset resulted in 83% retrieval accuracy. 

There are several ways to further improve the system 
performance, one of which relates to segmentation errors. These 
results indicate that by improving the segmentation performance, 
retrieval results close to that of manual transcription can be 
obtained. To achieve better results, the performance of each 
module needs to be improved. On the speech recognizer side, 
better note models need to be created to decrease the frequency of 
deletion and insertion errors. For pitch and energy analysis, better 
statistical approximations of note transitions can be used. 

On the other hand, the general performance of the system is also 
directly affected by the retrieval calculations. Better statistical 
models could be developed to make the retrieval algorithms more 
robust against user dependent uncertainty and system dependent 
representation errors. These are part of our ongoing work. 
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