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Abstract

Training categorical prosody models for spoken language sys-
tems requires a significant amount of speech data annotated
with the discrete labels of interest. In practice, the difficulty
and expense incurred in producing corpora with rich prosodic
transcriptions severely limits their integration within applica-
tions. In this paper, we explore the possibility of using a large,
unlabeled corpus to adapt, in an unsupervised fashion, acoustic-
prosodic models trained from a small, human-annotated seed
dataset. Our experiments show that the proposed adaptation
scheme improves the ability of the acoustic-prosodic modelto
distinguish between prosodic categories. On a test set derived
from the Boston University Radio News Corpus, the adapted
models reduced pitch accent detection error rate by 4.4% rela-
tive to the seed acoustic-prosodic models trained from the an-
notated data.

1. Introduction
Symbolic representations of prosody such as those proposed
by the ToBI [1] annotation standard have been shown to be
useful for spoken language systems, including speech recog-
nition. Models linking discrete prosody labels to linguistic el-
ements (words and syllables) allow us to tap into the parallel
stream of information (supplementary to traditional segment-
level acoustic-phonetic features, such as MFCCs) contained in
speech prosody, in a robust and principled fashion. Hasegawa-
Johnson et al. [2] used joint prosodic-phonetic acoustic mod-
els and a prosody-enriched language model to improve speech
recognition performance. Subsequently, we presented a scheme
for using categorical prosody models decoupled from the ASR
to rescoreN -best lists [3] and to directly enrich ASR lattices
with symbolic prosody [4] for improved speech recognition per-
formance.

The key to developing categorical prosody models for
spoken language applications is the availability of prosody-
annotated speech corpora. Producing such corpora, however,
is a laborious and expensive exercise - with the result that such
corpora are usually small in size and are available only for select
domains. This presents a sparsity issue for training the prosody
models. For instance, a Gaussian mixture acoustic-prosodic
model (GMM) may require several hundred free parameters to
be trained with just a few thousand training samples, causing
the model to overfit the training set and preventing generaliza-
tion to unseen data.

In this paper, we present a technique for unsupervised adap-
tation of GMM-based acoustic-prosodic models using a much
larger, unannotated dataset. Our scheme involves weighting the

adaptation data using the seed models (trained from a small,
human-annotated corpus), followed by maximuma-posteriori
(MAP) adaptation of the seed models using a weighted variant
of the expectation-maximization (EM) algorithm. We show that
the adapted models outperform the seed models on the binary
pitch accent (presence vs. absence) detection task. The remain-
der of this paper is organized as follows: Section 2 describes
the data corpus used in our experiments. Section 3 describesthe
acoustic and linguistic components of the baseline pitch accent
detection system. Section 4 provides an in-depth description of
our adaptation scheme. Section 5 summarizes our experimental
results and finally, Section 6 concludes the paper with a brief
discussion of our findings and outlines future directions for re-
search.

2. Data Corpus
The Boston University Radio News Corpus (BU-RNC) [5] con-
sists of about 3 hours of read news broadcast speech from 6
speakers (3 male, 3 female) with ToBI-style pitch accent and
boundary tone annotations. The entire corpus consisted of
29,573 words, which we split into a training set (14,719 words)
and an evaluation set (14,854 words). After eliminating story
repetitions from the evaluation set, its useful size was reduced
to 10,273 words. We then performed a 5-fold split of the evalu-
ation set, with 80% (8,218 words) of the data in held-out devel-
opment sets and 20% (2,055 words) in test sets. These partitions
were carried out in such a way that all 5 cross-validation test sets
were independent of each other. We chose a much smaller train-
ing set than usual to simulate real-world situations where very
little prosodically annotated data is available, and to test the ef-
ficacy of our algorithm in a data-starved scenario. As before,
various types of pitch accents annotated in the BU-RNC were
collapsed to binary labels that indicated presence or absence of
pitch accents. A total of 7,002 words (47.5%) in the trainingset
carried any type of pitch accent.

The adaptation dataset was culled from the WSJ1 (CSR-
II) [6] broadcast news speech recognition corpus and consisted
of approximately 22,400 utterances (52 hours, 407,000 words).
This corpus consists of just the speech data and associated tran-
scriptions, and does not provide symbolic transcription ofpitch
accents or other prosodic events. The unsupervised algorithms
described in the following sections used this corpus to adapt the
seed model.

3. Baseline system
The prosodic event detector used in our experiments follows
our work in [7], where we proposed a maximuma-posteriori



Table 1: Acoustic-prosodic features
Feature Description
VOWEL DUR maxv∈wi

norm dur(v)
F0AVG UTT |avgF0(wi) − avgF0(utt)|
F0RANGE maxF0(wi) − minF0(wi)
F0AVG PAVG |avgF0(wi) − avgF0(wi−1)|
F0AVG NAVG |avgF0(wi) − avgF0(wi+1)|
F0MAX PMAX |maxF0(wi) − maxF0(wi−1)|
F0MAX NMAX |maxF0(wi) − maxF0(wi+1)|
ERMS AVG rmse(wi)/rmse(utt)
ERMS PRMS rmse(wi)/rmse(wi−1)
ERMS NRMS rmse(wi)/rmse(wi+1)

(MAP) structure for the prosody recognizer. Thus, our system
chooses the sequence of binary pitch accent labelsP that max-
imizes their posterior probability given the acoustic-prosodic
featuresAp and the word sequenceW, according to Eq. 1.

P
∗ = arg max

P

p(P|Ap,W) (1)

We simplify the above expression by first applying Bayes’
rule and then by invoking the assumption that the acoustic-
prosodic features are conditionally independent of the lexical
evidence, given the sequence of pitch accent labels. Eq. 1 can
then be rewritten as follows.

P
∗ = arg max

P

p(Ap,W|P)p(P)

≈ arg max
P

p(Ap|P)γp(W,P) (2)

In Eq. 2, the RHS involves two factors - a) the prosodic
acoustic modelp(Ap|P), which provides the likelihood of the
acoustic-prosodic features given the pitch accent label and b)
the PLMp(W,P), which relates the word sequence to the pitch
accent label sequence. A weighting parameterγ controls the
contribution of the acoustic-prosodic model; low weights imply
that the prosodic language model plays a more important rolein
classification, and vice-versa.

3.1. Prosodic acoustic model

The acoustic model is implemented as a 25-mixture Gaus-
sian Mixture Model (GMM) with diagonal covariance structure.
Since the pitch accent labels are binary (accent vs. no accent),
we trained two GMMs, one for each class, using the EM algo-
rithm. In order to test the utility of our method in sparse data
conditions, we also trained more complex seed models with
45 mixtures. Word-level acoustic-prosodic features for train-
ing these GMMs are obtained from ASR forced alignment at
the word- and phone-level, and are based on previous work on
prosody labeling. Table 1 lists a total of 10 features extracted
from the F0 track, energy, and vowel duration cues.

3.2. Prosodic language model

The PLM is a joint probability distribution over the word se-
quenceW and binary pitch accent tagsP. We implemented
it by creating compound tokensW′ = (W, P) and training a
standard back-off trigram LM with these tokens. This model is
trained only on the annotated data from the BU-RNC. We used
the SRILM toolkit [8] to train the prosodic language model.
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Figure 1: Word confusion network with prosodic variants

3.3. Labeling algorithm

Our word-level pitch accent labeling implementation begins
with the construction of a word graph (“sausage”) for each test
utterance, as shown in Fig. 1. Accented and non-accented vari-
ants of a word form the arcs between successive nodes in the
graph. Next, we evaluate likelihood scores for the two prosodic
variants using the acoustic model and embed these within the
corresponding arcs. The graph is then rescored with the seed
PLM. Finally, Eq. 2 is implemented using the Viterbi algorithm
to determine the best path through the resulting lattice.

4. Acoustic-prosodic model adaptation
One straightforward approach to adaptation involves usingthe
seed prosody models to obtain binary pitch accent labels forthe
adaptation data, and using this automatically annotated data to
adapt the seed acoustic models using standard EM-based MAP
[9]. However, the seed models are likely to exhibit a higher-
than-desirable error rate for pitch accent detection on theunla-
beled data, thereby reducing the utility of those data for adap-
tation. Instead, we propose a soft adaptation approach in which
the seed models assign posterior probability scores for prosodic
variants of each word. These scores are then used to adapt the
seed acoustic-prosodic models using weighted EM-MAP.

4.1. Adaptation data weighting

We set up the pitch accent detection framework for the unla-
beled adaptation data using the seed models as described in Sec-
tion 3.3. Due to the back-off structure of the prosodic LM, the
lattices generated by rescoring the word graph with the seed
models no longer retain the original sausage structure.

Next, we generate posterior probabilities for each com-
pound tokenW ′ = (W, P ) by a two-step process: 1) link pos-
teriorsp(l|Ap) are computed for each linkl in the rescored lat-
tice using a variant of the forward-backward algorithm and 2)
links corresponding to the same compound token are collapsed
to generate a confusion network identical to the one that was
originally created for labeling, except that the arcs in thenet-
work now contain compound token posterior probabilities com-
puted from the prosodic acoustic and language models. This
technique for generating posteriors and confusion networks is
borrowed from minimum word error rate decoding for ASR
[10, 11]. These posterior probabilities are used as adaptation
weights in the modified EM-MAP scheme.

4.2. Weighted EM-MAP

We propose a novel, weighted EM-MAP scheme for soft adap-
tation of the acoustic-prosodic models using posterior proba-
bilities obtained from the prosodic confusion networks. This
method differs from conventional EM training for GMM esti-
mation in that each adaptation sample has a weight associated
with it. Samples with larger weights (indicative of high confi-
dence) contribute more to the adaptation process, whereas sam-



ples with low confidence do not have a significant influence on
the adapted estimates. A distinctive feature of this approach
is that we do not divide the unlabeled data into classes based
on confidence scores; rather, all adaptation samples affectboth
acoustic-prosodic models simultaneously, but to different de-
grees. The relative influence of each sample on the GMMs is
dictated by the external information source, in this case the pos-
terior probability assigned to each sample by the seed models.

We begin by defining a log-likelihood function that incor-
porates the seed model weights as shown in Eq. 3.

L(Θ|X,B) = p(X|Θ,B)

=

N
∏

i=1

K
∑

k=1

ωkpk(xi|θk, βi) (3)

wherepk(xi|θk, βi) ≡ N (xi; µk, β−1
i Σk). This function dif-

fers from the traditional log-likelihood function due to inte-
gration of the confidence weightsB = {β1, . . . , βN} associ-
ated with vector adaptation samplesX = {x1, . . . , xN}. The
rationale behind this modified log-likelihood function is that
adaptation samples associated with a large weight “see” a nar-
row, focused distribution, whereas samples with low confidence
weights “see” a diffuse, flat distribution. As we will see, this
formulation leads to parameter update equations that emphasize
samples with high confidence and vice-versa.

Following the notation of [12], the modified auxiliary func-
tion for EM is then given by Eq. 4 (the superscript inΘg indi-
cates an initial “guess” for the parameterΘ).

Q (Θ,Θg) = E (log p(X,Y|Θ,B)|X,Θg,B)

=
∑

y∈Y

log p(X,Y|Θ,B)p(y|X,Θg,B)

=
K

∑

k=1

N
∑

i=1

cik log(ωkpk(xi|θk, βi) (4)

wherecik = p(k|xi,Θ
g, βi) =

ω
g

k
pk(xi|θ

g

k
,βi)

∑

K
l=1

ω
g
l

pl(xi|θ
g
l

,βi)
.

Using basic vector and matrix calculus [12], this modified
auxiliary function can be maximized w.r.t the unknown param-
eters to obtain the following maximum-likelihood (ML) update
equations for the mixture weightsωk, mean vectorsµk and co-
variance matricesΣk.

ω
′

k =
1

N

N
∑

i=1

cik (5)

µ
′

k =

∑N
i=1 βicikxi

∑N
i=1 βicik

(6)

Σ
′

k =

∑N
i=1 βicik(xi − µk)(xi − µk)t

∑N
i=1 cik

(7)

These modified update equations make intuitive sense:
Eq. 6 is the mean of the adaptation samples weighted not only
by the mixture occupation likelihoodscik as in conventional
EM, but also by the confidence weightsβi. This suggests that
the adaptation samples with large confidence weights influence
the estimated GMM mean vectors to a greater extent than sam-
ples with low weights. Similarly, Eq. 7 implies that the distri-
butions are focused around the samples with large confidence
weights.

While the ML update equations provide intuition on how
the confidence weights impact parameter estimation, our task
in this paper is to adapt existing seed acoustic-prosodic models
using unlabeled data. Maximuma-posteriori (MAP) adapta-
tion is the traditional approach to this problem. Followingthe
approach of [9], we construct a prior distribution for the GMM
parameters by assuming the form of a Dirichlet distributionfor
the mixture weightsωk and a normal-Wishart distribution for
the mean vectorsµk and covariance matricesΣk as illustrated
in Eq. 8.

P (Θ) ∝
K
∏

k=1

ωλk
k |Σ−1

k |αk−d/2

· exp
(

−
τk

2
(µk − mk)tΣ−1

k (µk − mk)
)

· exp
(

−tr(UkΣ−1
k )

)

(8)

These prior “hyperparameters” are computed using the
original (labeled) seed training data in a manner similar tothat
described in [13]. This leads to the following update equations
for weighted EM-MAP.

ω
′

k =
λk +

∑N
i=1 cik

N +
∑K

k=1 λK

(9)

µ
′

k =
τkmk +

∑N
i=1 βicikxi

τk +
∑N

i=1 βicik

(10)

Σ
′

k =
2Uk + Sk + Mk

2αk − d +
∑N

i=1 cik

(11)

where, for ease of notation, we have definedSk andMk as
follows:

Sk =
N

∑

i=1

βicik(xi − µk)(xi − µk)t (12)

Mk = τk(mk − µk)(mk − µk)t (13)

As with standard EM, Eqs. 9, 10, 11 are evaluated iteratively
until convergence.

5. Experimental results
The BU-RNC dataset was split into training and evaluation sets
as described in Section 2. The evaluation set was further divided
into 5 held-out development and cross-validation test setswith
80% of evaluation data (8,218 samples) in the former and 20%
(2,055 samples) in the latter. The 5 cross-validation test sets
were independent of one another.

We first trained seed acoustic-prosodic GMMs and prosodic
language models as described in Section 3. For testing our
adaptation scheme in sparse data conditions, we trained more
complex seed GMMs with 45 mixtures; we were forced to
use diagonal covariance matrices for these models because full-
covariance matrices quickly became ill-conditioned as a result
of data sparsity. Using our adaptation technique, it is possible to
start from these seed diagonal covariance models and train full-
covariance models that can better fit the data, possibly leading
to improved classification performance as well.

The adaptation data was scored using the seed acoustic-
prosodic models and the prosodic language models to generate
lattices encoding prosodic variants of each word in the adapta-
tion set. Posterior probabilities (confidence weights) were then



Table 2: Pitch accent classification error
Model Held-out Test
Seed 1 (25 / diag) 26.52% 26.52%
Seed 2 (45 / diag) 26.40% 26.39%
Adapted (45 / full) 25.20% 25.24%

obtained for each adaptation sample by converting the scored
lattices to confusion networks as described in Section 4.1.
These raw scores were pruned so that only those samples with
a large difference between the two class posteriors would be
used for adaptation (these samples have a very high likelihood
of being labeled correctly by the seed models). The pruned con-
fidence scores were used to adapt the seed models according to
the weighted EM-MAP scheme described in Section 4.2. Two
parameters were sequentially optimized by evaluating the clas-
sification performance of the adapted models on the held-out
development data: 1) the weight of the acoustic-prosodic model
in Eq. 2 and 2) the pruning threshold for selecting samples from
the adaptation set for weighted EM-MAP.

Table 2 summarizes the pitch accent classification error per-
formance of the seed and adapted models averaged across the 5
development and test sets. It is clear from these figures that
increasing the number of mixtures from 25 to 45, while main-
taining the diagonal covariance structure does not improveclas-
sification performance (only 0.5% relative on both held-outand
test sets). On the other hand, we note that the adapted models
reduce the classification error rate by 4.6% relative to the 45-
mixture seed models on the held-out sets and by 4.4% relative
on the test sets.

6. Discussion
Data sparsity due to lack of large, annotated corpora is a prob-
lem encountered by almost all spoken language applications
that use categorical representations of prosody. This makes
it difficult to learn relationships between prosodic symbols
and acoustic-prosodic features or lexical items (syllables and
words). In this paper, we presented a novel technique based on
a modified EM-MAP algorithm to adapt seed acoustic-prosodic
models using a large, unlabeled corpus. This technique permit-
ted us to train full-covariance GMMs, which was not possible
with the seed training data due to sparsity. The adapted models
provided classification error reduction of 4.4% relative tothe
seed models on the binary pitch accent classification task.

Our main contribution in this paper was the formulation
of a modified EM algorithm for maximum-likelihood or MAP
estimation of GMM parameters in the presence of an exter-
nal knowledge source, which ranks (by assigning numerical
weights) the training or adaptation samples in order of their “be-
longingness” to the model that represents them. This technique
is very general and may be applied to arbitrary data.

One limitation of this approach is that the two GMMs are
adapted in a generative fashion; while this may likely result
in the adapted GMMs better fitting their respective classes,
it does not necessarily guarantee better classification perfor-
mance. Thus, we would like to use the proposed weighted EM
approach within a discriminative-based adaptation framework
to determine whether it would have a greater impact on classi-
fication performance. Our ultimate goal is to use these adapted
models within spoken language applications in tandem with our
proposed adaptation scheme for prosodic language models [14],
beginning with prosody-integrated speech recognition.

7. References
[1] K. Silverman, M. Beckman, J. Pitrelli, M. Osten-

dorf, C. Wightman, P. Price, J. Pierrehumbert, and
J. Hirschberg, “ToBI: A standard scheme for labeling
prosody,” inProceedings of the International Conference
on Spoken Language Processing, 1992, pp. 867–869.

[2] M. Hasegawa-Johnson, J. Cole, C. Shih, K. Chen, A. Co-
hen, S. Chavarria, H. Kim, T. Yoon, S. Borys, and J.-Y.
Choi, “Speech recognition models of the interdependence
among syntax, prosody and segmental acoustics,” inPro-
ceedings of HLT/NAACL, 2004.

[3] S. Ananthakrishnan and S. Narayanan, “Improved speech
recognition using acoustic and lexical correlates of pitch
accent in a N-best rescoring framework,” inProceedings
of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2007.

[4] S. Ananthakrishnan and S. Narayanan, “Prosody-enriched
lattices for improved syllable recognition,” inProceedings
of the International Conference on Spoken Language Pro-
cessing, Antwerp, September 2007.

[5] M. Ostendorf, P. Price, and S. Shattuck-Hufnagel, “The
Boston University Radio News Corpus,” 1995.

[6] CSR-II (WSJ1) Complete, Linguistic Data Consortium,
Philadelphia, 1994.

[7] S. Ananthakrishnan and S. Narayanan, “Automatic
prosody labeling using acoustic, lexical and syntactic ev-
idence,” to appear in the IEEE Transactions on Audio,
Speech and Language Processing, vol. 16, no. 1, 2007.

[8] A. Stolcke, “SRILM - An extensible language modeling
toolkit,” in Proceedings of the International Conference
of Spoken Language Processing, vol. 2, Denver, 2002, pp.
901–904.

[9] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori esti-
mation for multivariate Gaussian mixture observations of
Markov chains,”IEEE Transactions on Speech and Audio
Processing, vol. 2, no. 2, pp. 291–298, April 1994.

[10] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in
speech recognition: Word error minimization and other
applications of confusion networks,”Computer, Speech
and Language, vol. 14, no. 4, pp. 373–400, 2000.

[11] G. Evermann, “Minimum word error rate decoding,” Mas-
ter’s thesis, Cambridge University, 1999.

[12] J. Bilmes, “A gentle tutorial on the EM algorithm and
its application to parameter estimation for Gaussian mix-
ture and hidden Markov models,” University of Berkeley,
Tech. Rep. ICSI-TR-97-021, 1997.

[13] J.-L. Gauvain and C.-H. Lee, “Bayesian learning of Gaus-
sian mixture densities for hidden Markov models,” inPro-
ceedings of the DARPA Speech and Natural Language
Workshop. Pacific Grove, CA: Morgan-Kaufmann, 1991,
pp. 272–277.

[14] S. Ananthakrishnan and S. Narayanan, “A novel algorithm
for unsupervised prosodic language model adaptation,” in
submitted to the International Conference on Acoustics,
Speech and Signal Processing, Las Vegas, 2008.


