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Abstract 

Automatic reading assessment software has the difficult task of 

trying to model human-based observations, which have both 

objective and subjective components.  In this paper, we mimic 

the grading patterns of a “ground-truth” (average) evaluator in 

order to produce models that agree with many people’s 

judgments.  We examine one particular reading task, where 

children read a list of words aloud, and evaluators rate the 

children’s overall reading ability on a scale from one to seven.  

We first extract various features correlated with the specific 

cues that evaluators said they used.  We then compare various 

supervised learning methods that mapped the most relevant 

features to the ground-truth evaluator scores.  Our final system 

predicted these scores with 0.91 correlation, higher than the 

average inter-evaluator agreement. 

Index Terms: children’s speech, reading assessment, feature 

selection, pronunciation verification, disfluency detection 

1. Introduction 

Reading assessment is a vital component of children’s early 

education and second language learning.  This task is rooted in 

objective rule-based observation but has an important human 

subjective component as well.  For example, humans might 

listen for specific phones within a word pronunciation when 

evaluating whether it was read correctly or not (a decision 

largely based on objective observation) but may use some 

combination of more subjective cues, such as fluency and 

speaking rate, when evaluating the pronunciation quality of a 

read sentence.  Here, we use the term subjectivity to indicate 

the level of personal judgment that goes into the decision.  If 

two or more evaluators judge the same material, this level can 

be measured quantitatively using, for example, Pearson’s 

correlation (i.e. the lower the correlation between the 

evaluators, the higher the level of subjectivity).   

 Automatic reading assessment software could offer 

numerous advantages, including saving human evaluators time 

and offering consistent evaluations across different subjects 

and over time.  One way in which to design automatic reading 

assessment software is to train it to grade like a typical human 

evaluator or bank of evaluators.  This can be viewed as a 

challenging signal processing and machine learning problem.  

First, we need to extract features that correlate with cues 

humans use.  Second, the relevant features must be mapped to 

the evaluators’ judgments.  This two-step problem is further 

complicated when we do not know exactly how evaluators are 

making their judgments and/or in cases where evaluators are 

deriving them in different ways.  However, if we are able to 

cover the spectrum of cues humans use and have some training 

data of actual human evaluations, then we can use supervised 

learning methods that incorporate the most relevant features.   

 In this paper, we assess children’s overall reading ability 

based on their performance on an isolated word reading task.  

We concentrate on predicting the ground-truth evaluator’s 

scores (scores averaged across the evaluators) in order to train 

models that mimic their common grading patterns.  Future 

research will explore predicting the more subjective individual 

evaluator’s scores.  In our previous work, we showed we could 

successfully predict ground-truth evaluator’s scores using two 

features: one correlated with pronunciation correctness and the 

other correlated with the fluency of the children’s speech [1].  

This paper expands upon our previous work in a number of 

ways: 1) we have evaluators rate 42 children, more than three 

times as many, 2) we do not have evaluators rate the 

pronunciation quality of each word individually but rather 

allow them to listen to the entire list of words and then make 

their judgment using their own criteria, 3) we do not assume 

the two aforementioned features are sufficient but instead 

over-generate features based on cues the evaluators said they 

used, and 4) we try several supervised learning techniques that 

make use of this pool of features to predict the ground-truth 

evaluator’s scores of children’s reading ability.     

2. Corpus 

We used speech from the Tball Corpus [2], collected in 

kindergarten, first, and second grade classrooms in the Los 

Angeles area from both native English and Spanish speaking 

children.  We randomly selected 42 children who were tested 

on an isolated English word reading task.  Each word was 

displayed on a computer screen for a maximum of five seconds 

before the next word was shown.  The word list and order for 

each child was identical, beginning with simple words (e.g., 

map, rip) before progressing to more difficult ones (e.g., cute, 

rested).  Some children were unable to complete the word list, 

so the number of words per child ranged from 10 to 23.   

3. Human evaluation 

Eleven engineering graduate students rated the speech from 

each child (we found no significant difference between student 

evaluators and expert linguists/teachers in [1]).  We 

randomized the order of the children for each evaluator but 

maintained chronological word order within each child’s 

speech.  To simulate the reading task, we combined all the 

words for one child into a single audio file and inserted a short 

beep to indicate word boundaries.  We provided the word list 

to the evaluators for each child, so they could track the child’s 

progress while they listened.  After listening to the audio file, 

each evaluator rated the child’s overall reading ability on an 

integer scale from one (“poor”) to seven (“excellent”).  We 

purposefully did not instruct evaluators how to grade the 

children or offer them examples of an “excellent” versus a 

“poor” reader for two main reasons: 1) we did not know in 

advance what an “excellent” versus a “poor” reader was to all 

evaluators, and 2) we wanted evaluators to come up with their 

own grading criteria.  Evaluators could listen to each child’s 

audio file as many times as they felt necessary and were also 

encouraged to change previously assigned scores.  After rating 

all 42 children, we asked evaluators to list the criteria they 

used when making these judgments.  



 The mean pairwise evaluator correlation was 0.825.  We 

calculated ground-truth scores for each child by averaging 

across all 11 evaluators.  Table 1 shows the three metrics we 

used to compare each evaluator’s scores with the ground-truth 

scores (where we used leave-one-evaluator-out cross-

validation for these calculations).  The ground-truth scores 

served as the dependent variable in this paper, and the same 

three metrics are used later to compare our automatic results.   

 
Metric Mean (std. dev.) 

Evaluator Correlation with GT Scores 0.899 (0.038) 

Mean Absolute Error with GT Scores 0.624 (0.137) 

Maximum Absolute Error with GT Scores 2.227 (0.388)  
 

Table 1: Metrics comparing each evaluator’s scores with the 

ground-truth (GT) scores (mean and standard deviation shown).   

4. Feature extraction 

Analyzing the open-ended question posed at the end of the 

human evaluation, the three most cited cues that the 11 

evaluators used when making their judgment on overall 

reading ability were: pronunciation correctness, fluency of 

speech, and speaking rate, which is consistent with other 

studies [3,4] and our previous work [1].  As discussed in the 

introduction, we feel an over-generation of potentially useful 

features is needed to tackle this machine learning problem, 

since the exact grading method of the evaluators is unknown.  

Therefore, we extracted many features that were based on 

these three main cues provided by the evaluators.  Since the 

children were reading a list of words in isolation, it was 

natural to extract these features at the word-level.  Sections 

4.1-4.3 discuss the word-level features correlated with 

pronunciation correctness, fluency, and speaking rate, 

respectively.  Section 4.4 discusses how we generate our final 

set of child-level features from these word-level features.   

4.1. Pronunciation correctness word-level features 

We applied traditional pronunciation verification methods to 

extract automatic scores (referred to as word-level features) 

correlated with pronunciation correctness.  First, we created 

four dictionaries with various phonemic pronunciations, as 

described in Table 2.  Since these were young children 

learning to read, many of the common reading mistakes are 

predictable (Reading Error dictionary), and since many of the 

children were from Mexican-American families, common 

Spanish-speaking confusions were also to be expected 

(Spanish Confusion dictionary) [5].  The Recognition 

dictionary was the union of the Acceptable, Reading Error, 

and Spanish Confusion dictionaries; note that the Reading 

Error and Spanish Confusion dictionaries were not disjoint.   

 
Dictionary Name Avg. # Entries for word, “map” 

Acceptable 1.18 /m ae p/ 

Reading Error 2.13 /m ey p/ 

Spanish Confusion 1.09 /m aa p/ 

Recognition 3.71 /m ae p/, /m ey p/, /m aa p/ 
 

Table 2: Average number of entries per target word and entries 

for the word, “map,” for the four dictionaries.   

 

 We used the same acoustic models as in our previous 

work, trained on 12 hours of held-out children’s speech: three-

state 16 Gaussian monophone HMMs, a background HMM, 

and a word-level “garbage” HMM [1,6].  We extracted the 

first three pronunciation correctness features in Table 3 by 

running speech recognition with the Recognition dictionary 

using a grammar that allowed for one forced alignment of the 

target word and optional silence/garbage before and/or after 

this forced alignment.  We then ran forced alignment over the 

portion of the utterance endpointed as the target word with the 

Acceptable, Reading Error, and Spanish Confusion 

dictionaries and with the garbage model to attain the log-

likelihoods of the pronunciation being an acceptable 

pronunciation, a reading error, a Spanish-confusion related 

error, and garbage.  These log-likelihoods were used to 

compute the remaining word-level features listed in Table 3.  

 
Description Domain 

Was an “acceptable” pronunciation recognized? {N=0, Y=1} 

Was a “reading error” recognized? {N=0, Y=1} 

Was a “Spanish-related error” recognized? {N=0, Y=1} 

Log-likelihood of acceptable pronunciation (LLacc) Continuous 

Log-likelihood of reading error (LLread) Continuous 

Log-likelihood of Spanish-related error (LLSpanish) Continuous 

LLacc – LLread Continuous 

LLacc – LLSpanish Continuous 

LLacc – LLgarbage Continuous 

LLacc – max{LLread, LLSpanish} Continuous 

LLacc – max{LLread, LLSpanish, LLgarbage} Continuous 
 

 Table 3: Pronunciation correctness word-level features. 

4.2. Fluency word-level features 

To extract features correlated with the fluency of the speech, 

we re-ran the speech recognition with the Recognition 

dictionary, except this time we used a grammar that allowed 

for individual phones within the various pronunciations of the 

dictionary to be recognized.  Thus, we were able to recognize 

“partial word” pronunciations of the target word, which helped 

detect when a child made more than one attempt at reading the 

word (e.g., hesitations, sounding-out the word, repetitions) 

[6,7].  We found in our previous studies that the presence of 

these partial words was significantly negatively correlated with 

people’s perception of fluency [1,6].  Table 4 shows the 

fluency features we extracted at the word-level from the output 

of the speech recognizer when using the disfluency-specialized 

grammars.  We considered voiced partial words separately 

because we noticed a higher false alarm rate for unvoiced 

phones and because voiced phones may have a larger impact 

on the perception of fluency.  For all temporal features, we 

also included the square root of the feature, since this 

transformation resulted in a less-skewed distribution.   

 
Description Domain 

Number of recognized partial words {0, 1, 2, …} 

Number of unique recognized partial words {0, 1, 2, …} 

Was # of recognized partial words ≥ 1? {N=0, Y=1} 

Number of recognized voiced partial words {0, 1, 2, …} 

Number of unique recognized voiced partial words {0, 1, 2, …} 

Was # of recognized voiced partial words ≥ 1? {N=0, Y=1} 

Time of all recognized partial words [ms] Continuous 

Time of all recognized voiced partial words [ms] Continuous 

Time of silent regions between partial words [ms] Continuous 

Time of all partial words and silent regions [ms] Continuous 

Square root of all temporal features [ms1/2] Continuous 
 

 Table 4: Fluency word-level features. 

4.3. Speaking rate word-level features 

We extracted a number of word-level temporal features (Table 

5) that are correlated with speaking rate, based on the same 

speech recognition output described in Section 4.1 with the 

Recognition dictionary.  These features were all continuous.     



Target word start time (relative to when word first displayed) [ms] 

Target word total length in time (Ltarget) [ms] 

Number of syllables spoken / Ltarget [syllables / ms] 

Ltarget / Number of syllables spoken [ms / syllable] 

Number of phones spoken / Ltarget [phones / ms] 

Ltarget / Number of phones spoken [ms / phone] 

Square root of all temporal features listed above 
 

 Table 5: Temporal and speaking rate word-level features. 

4.4. Child-level features 

Since evaluators based their ratings after listening to all words 

read by each child, we needed to map the word-level features 

described in Sections 4.1-4.3 to “child-level” features.  We 

accomplished this by calculating the following descriptive 

statistics across the words of each child for all features: mean, 

standard deviation, skewness, kurtosis, minimum, minimum 

location (normalized by the number of words for the child), 

maximum, maximum location (normalized), range, lower 

quartile, median, upper quartile, and interquartile.  This 

produced our final set of 481 child-level features (13 statistics 

for each of the 37 word-level features).  While many of these 

features will be redundant and highly correlated, it is not 

obvious which ones are best.  For example, the median may be 

better than the mean in cases where the feature is susceptible 

to outliers.  Rather than address these robustness issues for 

each feature, we leave it up to the machine learning algorithm 

to eliminate irrelevant, noisy, and/or redundant features.   

5. Learning Methods 

Section 4 explained our over-generative approach to feature 

extraction, which resulted in 481 child-level features.  Since 

the children’s ground-truth overall reading ability scores were 

quasi-continuous values between one and seven, we chose to 

use supervised regression techniques.  We used linear methods 

for simplicity and interpretability and because applying 

nonlinear techniques on such a small dataset (42 data points) 

may be prohibitive.    We used leave-one-out cross-validation 

to separate train and test sets.  All learning parameters for the 

various methods we tried were optimized on each cross-

validation train set using leave-one-out cross-validation.   

 An obvious baseline method is multiple linear regression, 

which finds the linear weight coefficients of the features that 

minimize the square of the residual.  The objective function J 

in this case is equation 1, where equation 2 is the analytical 

solution which minimizes J.  Here, X is the matrix of child-

level features, w is the vector of coefficient weights, and y  is 

the centered (mean subtracted) vector of ground-truth scores.   

 )()(
2

yXwyXwyXwJ T
−−≡−=  (1) 

 yXXXw TT 1)( −
=  (2) 

 However, due to the redundancy in the proposed features, 

the solution to the inverse in equation 2 would be numerically 

unstable.  We addressed this problem by trying various feature 

selection methods.  As a baseline, we ran simple linear 

regression with each child-level feature individually.  Table 6 

shows the performance for the best features for each of the 

three feature types.  We next tried three feature selection 

methods within the linear regression framework: a forward 

selection method, stepwise linear regression, and the “lasso” 

(least absolute shrinkage and selection operator) [8].  Forward 

selection iteratively adds features that optimize the correlation.  

Stepwise regression is less greedy in that it can remove entered 

features if their coefficient’s p-values become too large.  The 

lasso algorithm finds a solution to the least-squares error 

minimization when adding a λ-weighted L1 regularization term 

to the objective function: 

 wywXJ λ+−=
2~

 (3) 

This penalizes solutions with large weight coefficients (which 

often occurs when features are correlated) and promotes sparse 

models i.e. many of the trained weight coefficients are zero 

[8].  There is no analytical solution to the lasso objective 

function, but we used a modification of the LARS (least angle 

regression) algorithm to efficiently implement the lasso [9,10]. 

Note that we must standardize the features to ensure the 

regularization term is applied equally to all features.  We 

accomplished this by centering X and dividing by the standard 

deviation of each feature (denoted by X
~

 in equation 3).   

6. Results & Discussion 

Table 6 shows the performance for all the aforementioned 

feature selection linear regression methods.  We obtained our 

best results, in terms of all three metrics, when we used the 

lasso algorithm and then re-trained the non-zero weights using 

linear regression without the regularization term (equation 2) 

i.e. multiple linear regression with the features selected by the 

lasso.  Figure 1 is the regression plot for this case, with Figure 

2 showing the resulting absolute error plot.  This model 

performed better than the mean evaluator in all three metrics, 

although this difference was not significant.  The final 

automatic model’s correlation with the ground-truth scores 

was significantly higher than the three baseline systems’ 

correlations when using single features (all p<0.05).   

 
Method (Features) R Mean |ε| Max |ε| 

LR (best correctness) 0.783 0.746 2.852 

LR (best fluency) 0.586 1.077 3.270 

LR (best temporal) 0.757 0.832 2.669 

LR (forward 2 features) 0.876 0.616 2.107 

LR (forward 3 features) 0.860 0.651 2.187 

LR (forward 4 features) 0.827 0.712 2.275 

Stepwise LR 0.880 0.604 2.107 

Lasso 0.886 0.815 2.326 

Lasso, then LR 0.906 0.502 1.971 

Mean human evaluator 0.899 0.624 2.227 
 

Table 6: Performance of various learning methods (LR = linear 

regression) compared to human evaluators for the 3 metrics. 

 

The lasso and linear regression combination method selected 

an average of 3.29 features at each cross-validation (primarily 

from four features).  Two features it always selected were the 

mean of the binary acceptable pronunciation i.e. the fraction 

of words recognized as being an acceptable pronunciation, and 

the upper quartile of the square root of the target word start 

time.  The former pronunciation correctness feature was 

positively correlated with reading ability (mean regularized 

weight coefficient = 0.803), while the latter temporal feature 

was negatively correlated (mean regularized weight coefficient 

= -0.508).  This agrees with intuition, since we would expect 

children who read the words correctly and wait less time to 

start speaking to receive better scores.  The other two features 

selected disjointly in about half of the 42 cross-validations 

each were fluency features: the maximum square root of time 

recognized as voiced partial words and the upper quartile of 



the square root of time recognized as any partial words.  Both 

of these features’ trained weights were negative (mean 

regularized coefficients of -0.379 and -0.340, respectively), 

which agreed with our previous findings that disfluent speech 

negatively impacts evaluators’ perception of reading ability.   
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Figure 1: Linear regression results when using features selected 

by the lasso (human error = mean human absolute error).   
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Figure 2: Comparison of the mean human evaluator errors and 

the prediction errors made by our best automatic model. 

 

 Figures 1 and 2 show that two-thirds of the predictions 

made by the linear regression model with the features selected 

by the lasso had prediction errors less than the mean human 

evaluator errors.  However, three predictions made by the best 

automatic model had relatively large errors.  We noticed in all 

three cases that the feature with the largest regularized weight 

coefficient, the mean of the binary acceptable pronunciation, 

was not accurate.  Two of the children were making 

unexpected reading errors; since these pronunciations were not 

included in any of the dictionaries, some of their 

mispronunciations were wrongly accepted.  We might gain 

from more complex pronunciation verification methods to 

improve our results, such as those used in [11].  For the third 

child with poor automatic prediction, our system rejected 

many acceptable pronunciations.  We feel this was due to 

acoustic model mismatches, a problem that could be avoided 

in the future if a small amount of training data for each child 

was used for acoustic model adaptation.  Even with these three 

outliers, the maximum absolute error made by our best 

automatic model (1.971) was still less than the mean 

maximum error made by the 11 evaluators (2.227); the high 

human error can be attributed to the subjective nature of the 

assessment and/or noise factors (e.g., evaluator fatigue).     

7. Conclusions & Future Work 

We found we could accurately predict judgments about 

children’s overall reading ability for one specific reading 

assessment task.  We first extracted many features correlated 

with the cues evaluators said they used: pronunciation 

correctness, fluency, and speaking rate.  We then used the 

lasso algorithm to select the most relevant features and applied 

linear regression to learn a ground-truth evaluator’s grading 

trends.  This model: 1) chose, on average, one feature from 

each of the three feature classes, 2) significantly beat baseline 

methods using single features, and 3) predicted scores within 

the mean human error for 28 out of the 42 children.   

 In some cases, it is important to grade like a single expert 

evaluator.  For example, in a classroom setting, automatic 

reading assessment software should grade like the children’s 

specific classroom teacher.  Future work will attempt to model 

the subjective judgments of individual expert evaluators.   
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