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Abstract

Atypical speech prosody is a hallmark feature of autism spec-
trum disorder (ASD) that presents across the lifespan, but is
difficult to reliably characterize qualitatively. Given the great
heterogeneity of symptoms in ASD, an acoustic-based objec-
tive measure would be vital for clinical assessment and inter-
ventions. In this study, we investigate speech features in child-
psychologist conversational samples, including: segmental and
suprasegmental pitch dynamics, speech rate, coordination of
prosodic attributes, and turn-taking. Data consist of 95 children
with ASD as well as 81 controls with non-ASD developmental
disorders. We demonstrate significant predictive performance
using these features as well as interpret feature correlations of
both interlocutors. The most robust finding is that segmen-
tal and suprasegmental prosodic variability increases for both
participants in interactions with children having higher ASD
severity. Recommendations for future research towards a fully-
automatic quantitative measure of speech prosody in neurode-
velopmental disorders are discussed.
Index Terms: prosody, autism spectrum disorder, intonation,
interaction

1. Introduction
“It’s not what you say, but how you say it.” This common saying
elucidates how critical speech prosody—the melody and timing
of speech—is to effectively communicating affect and inten-
tion. Unfortunately, many verbal individuals with autism spec-
trum disorder (ASD) have deficits in both discerning a speaker’s
intent from prosody and producing appropriate prosody [1],
which are detrimental to social functioning. ASD is a highly
heterogeneous neurodevelopmental disorder defined by impair-
ments in social communication and reciprocity, as well as re-
stricted, repetitive behavioral patterns and interests [2]. Atypi-
cal prosody in ASD is considered an understudied, high impact
research area [3], particularly considering the remarkable preva-
lence of the disorder (1 in 68 [4]).

Speech prosody of individuals with ASD is often described
as exaggerated or monotone, or slow and syllable-timed [3].
Yet, inter-rater evaluation on atypical prosody for diagnostic
purposes is inconsistent [5]; moreover, precision in identifying
types of atypicality is low, and little is known about the preva-
lence of individual deficits. Prosody research can have signifi-
cant translational impact; recent promising findings have shown
that visual feedback intervention based on even simple prosodic
measures such as vocal intensity improves production [6]. We
believe that objective computational methods can support ad-
vances in the understanding and treatment of atypical prosody.

Acoustic correlates of atypical prosody have only recently
been studied, as research has centered on human perception of

read or spontaneous speech. Relevant findings include atypical-
ities in sentential [7] and contrastive stress [8], increased paus-
ing [9], and abnormal voice quality [10]. Increasingly, com-
putational speech scientists are taking on the task of modeling
speech prosody in ASD. Studies of basic acoustic functionals
have reported increased f0 variability [11] and higher maximum
f0 for ASD subjects [12]. Regarding automatic modeling, re-
searchers have: computationally measured prosodic differences
in stress production [13]; automatically assessed prosodic imi-
tation skills [14]; and classified emotional expression [15].

Our work builds on several of our previous studies which
sought acoustic correlates of “atypical prosody” [16, 17, 18,
19]. It is important to note that the construct of atypical prosody
is currently not well defined. As such, we have concentrated on
experiments using one of two ground truths (each with their own
drawbacks): either ASD diagnosis (or symptom severity) or hu-
man perception of atypicality. Our experiments [16, 17, 18] in a
sample of 29 children from the USC CARE Corpus [20] found
children with increasing ASD severity spoke less, spoke slower,
responded later, had more variable prosody, and had more atyp-
ical voice quality. Additionally, the psychologist’s cues pre-
dicted severity, given that she must continually adjust her be-
havior to that of the child’s throughout the interaction. But not
all people with ASD have prosodic difficulties, so it is desirable
to relate our acoustic measures directly to perceived atypical
prosody, even though human agreement can be rather low. We
found that speech rate and rhythm cues were highly predictive
of perceived “awkwardness” [19].

In this work, we continue towards an automatic prosodic
evaluation by analyzing prosodic display in a large sample of
individuals with ASD as well as non-ASD developmental dis-
orders. Additionally, we introduce a novel feature group based
on the coordination of prosodic modalities, and we investigate
goodness of pronunciation (GOP). One limitation of the cur-
rent study is that we cannot examine voice quality given po-
tential recording differences between sites; future investiga-
tions should focus on this critical feature group. Through this
study, we aim to enhance our understanding of signal-derived
speech prosody measures, which are vital to behavioral interac-
tion analyses and the creation of automated clinical tools.

2. Methodology
In the following sections we discuss: data collection and partic-
ipant demographics; acoustic-prosodic features; and data anal-
ysis and machine learning.

2.1. Data Collection and Participants

Experimental data consist of Autism Diagnostic Observation
Schedule (ADOS [5]) Module 3 videos of a child interacting
with a psychologist. Module 3 is intended for children who are
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Table 1: Demographic information of all subjects: mean (stdv.)
N Severity Age (yr.) NVIQ Female

ASD 95 7.2 (2.1) 8.8 (2.6) 97.2 (20.3) 21.0%
non-ASD 81 2.6 (2.0) 8.3 (2.5) 95.7 (17.9) 30.9%

verbally fluent, and thus speech prosody is a valid analytical tar-
get. Data consist of 95 children with autism spectrum disorder
(ASD) and 81 subjects with a non-ASD developmental disor-
der; non-ASD subject diagnoses include attention deficit hyper-
activity disorder (ADHD), language disorders, mood/anxiety
disorders, and intellectual disability. Participant demographics
are presented in Table 1, including: ADOS severity, non-verbal
IQ, age, and gender. We control for demographic differences
during later analyses. ADOS severity is a measure of symptom
severity from 1-10, with 10 being most severe. Subject diag-
noses are “best-estimate clinical diagnoses”, and consider other
factors beyond the ADOS, such as parent report.

Data were collected at two sites as part of an IRB-approved
study. Video and audio quality varies between sessions and
sites. As diagnosis and ADOS severity was biased by site, we
did not feel confident in using voice quality or energy-based
measures which were previously shown to be characteristic of
ASD speech [17], but could be affected by site-specific channel
differences [21]. There were a total of 9 psychologists across
sites. Occasionally a second psychologist or a parent was in
the room. The second psychologist’s actions were attributed to
the primary psychologist, while a parent’s actions only affected
latency calculations.

2.2. Data Transcription and Alignment
The sessions were first manually transcribed through use an
adapted version of the SALT guidelines [22], wherein utter-
ances were also manually segmented. Speech segments that
were unintelligible or that contained high levels of background
noise were excluded from further acoustic analysis, as were
sessions that were entirely noisy. Word, syllable, and phone-
mic forced-alignment were then performed using data-specific
acoustic models with Kaldi [23].

2.3. Acoustic-Prosodic and Turn-taking Features

We compute five classes of features: turn-taking and speaking
rate; segmental pitch cues; suprasegmental intonation features;
goodness of pronunciation; and coordination between prosodic
modalities (a novel feature type). Details of the feature compu-
tation for each group follows in this section.

2.3.1. Turn-taking and Speaking Rate
We compute seven temporal descriptors of the social interac-
tion based on our previous work [16]. Six turn-taking features
describe the conversational style of each participant: speaking
time (%), turn length (words), latency (s), overall silence time
(%), intra-turn pause length (s), and fraction intra-turn pausing
(%). Speaking rate is calculated using forced-aligned syllable
boundaries as (#syllables/s). All features are calculated as
the median over a session.

2.3.2. Segmental Pitch Cues: Syllabic Pitch Contours
We consider the segmental intonation contours of short lex-
ical units as in previous studies [21, 17, 19]. This tech-
nique may capture speaker idiosyncrasies in micro-prosodic
production. We calculate syllable-level second-order polyno-
mial parametrization of pitch, then calculate session-level medi-
ans and inter-quartile ratios of slope and curvature. The overall
median pitch is also calculated, totaling 5 features.

2.3.3. Suprasegmental Intonation: Momel/Intsint
We characterize individuals’ intonation patterns in order to
quantify perceptions of either monotonic or exaggerated into-
nation. In particular, the macro-prosodic movement of pitch
is modeled using an automatic signal-derived method, Momel
(MOdeling MELody), which provides a phonetic representa-
tion of pitch intonation patterns [24]. The algorithm produces
a smooth curve that models the macro-melodic movements of
pitch, where deviations are attributed to micro-prosodic move-
ments related to segmental constraints. Taking raw fundamental
frequency as input, a set of target points for quadratic interpo-
lation is output. We compute the median-absolute-difference
between Momel points to capture dynamic variability.

These target points can be further transformed into a sym-
bolic representation of fundamental frequency patterns, namely
Intsint (International Transcription System for Intonation [24]).
Intsint comprises a limited set of abstract tonal symbols,
grouped as absolute or relative. Absolute tones refer to a
speaker’s overall pitch range, and are categorized as top, mid,
or bottom (T, M, B). Relative tones are determined relative to
the previous tone, and are categorized as: same (S) if less than
a threshold from the previous target; non-iterative high/low step
(H/L); or iterative up/down step (U/D), which tend to be smaller
than H or L steps. An example intonation contour and corre-
sponding Momel and Intsint outputs is displayed in Figure 1.
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Figure 1: Example intonation contour plotted with Momel tar-
get points and Intsint symbolic representation.

We calculate the frequency of relative tone changes (H, U,
S, D, L) as features, which may capture a speaker’s tendency
towards specific pitch dynamics. We implemented versions of
the proposed Momel/Intsint algorithms [25] in Matlab. Thresh-
olds for small and large steps were set at 0.125 and 0.25 octaves
from center. Analysis is done in the OME (Octave MEdian)
scale [26], a log-pitch transformation as in Eq. 1 through which
speaker’s tend to have the same pitch range of one octave.

OME = log(f0Hz)− log(median(f0Hz)) (1)

Since a speaker’s range has been observed to reliably be one
OME around center in neutral speech, all speakers should have
a comparable range regardless of median pitch (unlike for Hz).

2.3.4. Goodness of Pronunciation
Phonemic spectral distortions due to atypical, or immature, ar-
ticulatory controls may be perceived as “atypical” speech pro-
duction. As such, we utilize a measure of phonetic pronuncia-
tion quality, goodness of pronunciation (GOP [27]). GOP has
been shown useful for other paralinguistic tasks such as native-
ness detection [28]. GOP uses acoustic models (AMs) trained
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Table 2: Correlations of features with ADOS severity and best-estimate diagnosis. * indicates p<0.05; n.s. is non-significant.
Category Feature Child Psychologist

Trend with severity Sp. ρ group diff.? Trend with severity Sp. ρ group diff.?

Turn-taking &
speaking rate

speaking time (%) less −0.15∗ n.s. 0.01
turn length (words) shorter −0.17∗ n.s. 0.13
intra-turn pause (s) longer 0.18∗ X n.s. 0.12
intra-turn pause (%) n.s. 0.00 more 0.17∗ X
latency (sec) n.s. 0.11 longer 0.24∗

silence (%) more 0.15∗ more 0.15∗

speaking rate (syl/s) slower −0.20∗ X n.s. −0.05

Segmental
pitch cues

f0 curve median lower −0.18∗ n.s. −0.09
f0 slope median n.s. 0.12 n.s. 0.12
f0 curve IQR more 0.36∗ X n.s. 0.08
f0 slopeIQR more 0.28∗ more 0.25∗ X
f0 median higher 0.25∗ X higher 0.21∗

Suprasegmental
Intonation

m.a.d. Momel higher 0.17∗ X higher 0.25∗ X
Intsint High Tone (%) higher 0.19∗ higher 0.32∗ X
Intsint Same Tone (%) lower −0.19∗ lower −0.24∗ X
Intsint Low Tone (%) higher 0.19∗ higher 0.31∗ X

Prosodic
Coordination

corr. f0 & dur. lower −0.25∗ X N/A N/A N/A
corr. f0 & intensity lower −0.17∗ N/A N/A N/A
corr. dur. & intensity n.s. 0.09 N/A N/A N/A

Pronunciation GOP lower −0.20∗ N/A N/A N/A

on domain data to quantify pronunciation quality:

GOP =
1

N
log

(
P (O|Transcript)
P (O|AM loop)

)
(2)

where N is the number of frames and O are the acoustic fea-
tures. The numerator is the likelihood of the acoustics, given the
transcription and the native AMs, which is equivalent to forced
alignment. The denominator is typically estimated via auto-
matic speech recognition with the same set of AMs and an “AM
loop” grammar. Higher GOP scores indicate higher pronunci-
ation quality. GOP computation is performed using Kaldi [23]
with a slight modification. In our implementation of comput-
ing the denominator, we do not allow for transitions between
phones within the forced aligned phone boundaries.

2.3.5. Prosodic Coordination Features
We suspected that individuals with ASD may coordinate
prosodic modalities in unique ways. To assess this hypothe-
sis, we introduce a feature which measures the simultaneous
movements of pitch, duration, and intensity. In particular, for
each syllable we compute the duration, median pitch, and me-
dian intensity. These features are concatenated per speaker,
and then the Spearman’s rank-correlation coefficient is calcu-
late pairwise, producing three features.

2.4. Statistical Analysis and Machine Learning
We conduct correlation analysis, as well as classification (sup-
port vector machine) and regression (support vector regression,
SVR) via Liblinear software [29]. Parameters are tuned using
two-level nested cross-validation, and average statistics of ten
runs of CV are reported. Spearman’s rank-correlation coeffi-
cient and unweighted average recall (UAR, the mean of per-
class recall) are selected for evaluation metrics.

3. Results and Discussion
In this section we explore prosodic variation within ASD based
on objective features. In Section 3.1, the objective cues are an-
alyzed in the context of interaction, and in Section 3.2, the cues
are used to predict ASD severity (from the ADOS) and best-
estimate clinical diagnosis (ASD, non-ASD).

3.1. Correlational Feature Analysis
Acoustic and turn-taking feature correlations for both child and
psychologist are provided in Table 2. We concentrate on corre-
lations with ASD severity, which is better explained by our fea-
tures than best-estimate diagnosis. This finding may stem from
the fact that ASD severity is calculated from the ADOS interac-
tion data, whereas best-estimate diagnosis draws from external
factors that we cannot observe. All significant correlations with
severity are still significant after controlling for demographic
variables (i.e., age, gender, and NVIQ) except child turn length
(p=0.07) and child pitch curvature median (p=0.11).

Turn-taking cues provide an overarching depiction of inter-
action quality. In our data, children with higher ASD severity
tend to speak less, in shorter phrases, and with longer pauses;
additionally, they speak slower on average. These findings mir-
ror our previous findings in a smaller dataset[18]. Since the psy-
chologist is not only the evaluator, but also a participant in the
interaction, we can observe effects in their behavior according
to their participant’s social cues. In particular, the psychologist
tends to pause more within a turn and wait longer to start a turn
(more latency). Overall, there is also more silence. In sum, this
suggests that the psychologist may be unsure of when the child
will start and end turns, or that the child may be unresponsive.

Segmental pitch cues show short-term variability in use
of fundamental frequency. Children with higher social-
communicative deficits showed negative pitch curvature, which
is possibly perceived as “flat” or “monotonic”. For both the
child and the psychologist, short-term dynamic variability of
fundamental frequency increases. Pitch variability may increase
with enhanced affect, such as the psychologist trying to engage
the child, or in response to an interlocutor’s behavioral patterns.

Suprasegmental cues are essential for communicating in-
tention and affect. While we cannot fully model prosody with-
out knowing the semantic context of an uttered phrase, we can
look at global tendencies. Speakers with higher severity are
shown to have more macro-prosodic variability in all four of
the features that we examine, and likewise for the psychologist.
Specifically, both participants have larger pitch movements (oc-
taves) between successive Momel points. In symbolic repre-
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sentation (Intsint), there are more high and low tones, and less
same level pitch movements. This finding expands on previ-
ous reports of higher pitch variability, which often did not use
log-scales (pitch is log-normally distributed within speaker) and
were simply global functionals on raw fundamental frequency,
not providing insight into the dynamics. Note that the interme-
diate up-step and down-step tones are not displayed to improve
readability, since neither reached significance.

After listening to speaking samples, we suspected that indi-
viduals with “atypical” prosody were sometimes modulating a
prosodic modality independent of other modalities. We quanti-
fied prosodic coordination as the pairwise coordination between
three modalities: syllabic fundamental frequency, vocal inten-
sity, and duration. Results support that children with higher
ASD symptom severity coordinate their use of pitch with dura-
tion and vocal intensity to a lesser extent.

Lastly, we investigate pronunciation quality, motivated by
the possibility that articulation distortions, which occur gener-
ally in those with language delays, may be attributed to atypical
prosody. Results show that children with higher ADOS-ASD
severity do tend to have a lower goodness of pronunciation.
Whether, and to what degree, articulation distortions affect per-
ceptions of atypical prosody is a topic of future research.

3.2. Prediction Experiments
Correlational analysis informs interpretation in behavioral in-
teractions, but computational systems that support clinical re-
searchers in behavior tracking and intervention can rely on joint
modeling of many features. In this section, we analyze the
performance of different feature categories in predicting ASD
severity and best-estimate diagnosis (Table 3).

We initially examine the predictive power of the baseline
demographic features: age, gender, and non-verbal IQ. If these
features are predictive on their own, it’s possible that our speech
cues are directly predictive of demographics (e.g., IQ or age),
rather than ASD-related social behavior. We find that the demo-
graphic features are not significantly predictive of ASD severity
or diagnosis, and thus conclude that our features are capturing
ASD-specific behavioral patterns.

All features groups are significantly predictive of ASD
severity, and all but goodness of pronunciation significantly
classify ASD from non-ASD interactions based on both the
child’s and the psychologist’s features. Pronunciation quality
may more directly affect or represent social functioning, since
there is no diagnostic relevance.

The top individual feature groups for predicting severity
are: the child’s segmental pitch features; the psychologist’s
suprasegmental intonation features; and the child’s and psy-
chologist’s combined segmental intonation features. Based
on the analysis of Section 3.1, we conclude that increased
prosodic variability of both participants is a reliable predictor
of ASD severity. The individual feature groups achieve similar
ASD/non-ASD classification performance (aside from pronun-
ciation quality); turn-taking and speaking rate statistics reach a
peak of 58% unweighted average recall. Feature fusion leads to
the optimal performance of 0.35 correlation and 59% UAR.

4. Conclusion
We examined acoustic-prosodic and turn-taking features in in-
teractions with individuals with neurodevelopmental disorders
towards a better, evidence-based understanding. Five groups
of features were considered: turn-taking and speaking rate,
suprasegmental intonation, segmental pitch, prosodic coordi-
nation, and pronunciation quality. Unfortunately, voice qual-

Table 3: Regression and classification of ASD severity and best-
estimate diagnosis via acoustic-prosodic and turn-taking fea-
tures. Bolded statistics are significant at the α=0.05 level.

ASD Severity Diagnosis
Features Child Psych. C.&P. C.&P.
Baseline: Demographics -0.02 N/A -0.02 52%
Turn-taking 0.17 0.17 0.18 58%
Segmental 0.28 0.19 0.30 57%
Suprasegmental 0.08 0.25 0.22 56%
Prosodic Coord. 0.17 N/A 0.17 56%
Pronunciation 0.17 N/A 0.17 52%
Feature Fusion 0.31 0.31 0.35 59%
metric Spearman’s ρS UAR

ity features were excluded due to potential channel differences
between sites. The most robust finding is that segmental and
suprasegmental prosodic variability increases for both partici-
pants in interactions with children having higher ASD severity
(or ASD versus non-ASD disorders). Additionally, based on our
proposed features, children with higher ASD severity showed
lower coordination of pitch with other modalities.

5. Outlook for Future Research
Speech prosody remains a critical research area in autism spec-
trum disorder for which objective assessment can have true im-
pact in characterizing and tracking prosodic deficits. However,
one of the primary reasons that speech prosody is understudied
in autism is because of the difficulty in modeling it during con-
versational speech due to its variability and dynamic nature. Ini-
tial studies were limited to features like the mean and standard
deviation of pitch and intensity. The following are suggestions
for future research towards the goal of creating a computational
characterization of prosody in neurodevelopmental disorders.

• Optimal data collection: Collected should have high quality
(for complex feature extraction), high consistency, and ecolog-
ical validity. Spontaneous speech is much preferred over read
due to relevance to this social-communicative disorder.

• Maintaining Interpretability: A great appeal of engineering
methods is that complex models can be created that humans
need not understand, e.g., deep learning. However, in this par-
ticular problem domain, the primary drawback is that inter-
pretability is largely abandoned. With a loss of interpretability,
it is difficult to track why a system is successful (which may
be for dubious reasons [21]), and it is less clear if the system
will generalize to independent, uniquely collected data (than,
for example, knowledge-drive approaches [30]).

• Selecting a Ground Truth: Supervised learning necessitates
a ground truth. However, atypical prosody is a construct that,
while critically important, has no reliable ground truth. Two
choices are apparent: either ASD/non-ASD diagnosis or human
judgment. ASD behavior is highly variable; since not all chil-
dren have the same deficits, ASD diagnosis cannot be equated
to “autistic” prosody. Alternatively, human judgment is unre-
liable, especially for untrained raters [19]. Thus, it is our sug-
gestion that future studies simultaneously analyze the relevance
of prosodic features against both ground truths. Moreover, it
may be necessary that the final objective measures are entirely
bottom-up, derived from and defined by signals. Such a rule-
based approach would come with its own difficulties in gener-
alization, but would be one solution to creating a fully objective
definition of atypical prosody.
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