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ABSTRACT

Diagnostic procedures for ASD (autism spectrum disorder)
involve semi-naturalistic interactions between the child and
a clinician. Computational methods to analyze these ses-
sions require an end-to-end speech and language processing
pipeline that go from raw audio to clinically-meaningful be-
havioral features. An important component of this pipeline is
the ability to automatically detect who is speaking when i.e.,
perform child-adult speaker classification. This binary classi-
fication task is often confounded due to variability associated
with the participants’ speech and background conditions.
Further, scarcity of training data often restricts direct appli-
cation of conventional deep learning methods. In this work,
we address two major sources of variability—age of the child
and data source collection location—using domain adversarial
learning which does not require labeled target domain data.
We use two methods, generative adversarial training with
inverted label loss and gradient reversal layer to learn speaker
embeddings invariant to the above sources of variability, and
analyze different conditions under which the proposed tech-
niques improve over conventional learning methods. Using
a large corpus of ADOS-2 (autism diagnostic observation
schedule, 2nd edition) sessions, we demonstrate upto 13.45%
and 6.44% relative improvements over conventional learning
methods.

Index Terms— Child speech, domain adversarial learn-
ing, gradient reversal, autism spectrum disorder

1. INTRODUCTION

Autism spectrum disorder (ASD) refers to a group of neuro-
developmental disorders characterized by abnormalities in
speech and language [} 12, 3] and often diagnosed in chil-
dren using semi-structured dyadic interactions with a trained
clinician. The reported ASD prevalence has been steadily
increasing among children in the US: from 1 in 150 [4] to 1 in
59 [5], Computational processing of the participants’ speech
and language during such child-adult interactions has shown
potential in recent years in supporting and augmenting human
perceptual and decision making capabilities. [6, 7] [8]].
However, previous works utilized manual speaker labels
and transcripts for behavioral feature computation, which can
be expensive and time-consuming to create. Hence, feature
extraction at-scale is dependent on a robust speech and lan-
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Fig. 1: Speech processing pipeline for feature extraction

guage pipeline (Figure [T). An important component of the
pipeline is speaker diarization, which answers the question
“who spoke when?”. In the context of ASD diagnostic assess-
ment sessions, diarization can be approached as (supervised)
child-adult speaker classification. Training a child-adult clas-
sification system is often not straightforward due to multiple
sources of variability in the data. Among others, two pri-
mary sources of variability arise from developmental aspects
of child speech [9] and from varying background conditions,
often influenced by where and how the data are collected. In
this work, we train a child-adult classification system using
domain adversarial training [[10} [11]] to address these sources
of variability.

A generative adversarial network (GAN) is composed of
two mutually pitting neural networks, termed as the gener-
ator and the discriminator. These networks play a minimax
game, where the generator aims to create fake samples from
a noise vector of some arbitrary distribution in order to con-
fuse the discriminator. On the other hand, the discriminator
tries to distinguish between the real and fake samples. Do-
main adversarial learning can be formulated as a variant of
GANSs, where the noise vectors are replaced with target data,
and the (domain) discriminator network tries to discriminate
whether a sample belongs to source or target domain. Hence,
the generator network learns to extract domain-invariant rep-
resentations. The speaker classifier is trained on the generator
outputs in a multi-task manner. In this work, we have used
two different methods of domain adversarial training namely
Gradient Reversal (GR) [11] and Generative Adversarial Net-
works (GAN) [12]]. GR tries to learn the domain-invariant
feature by reversing the gradients coming from domain dis-
criminator while GAN aims to achieve the same by training
with inverted domain labels. The full network configuration
comprising of generator (feature extractor), discriminator and
speaker classifier is shown in Figure 2]



The rest of the paper is organized as follows: Section
[2] provides a brief overview of the background works. Sec-
tion [3] describes the domain adversarial methods used in this
work. Section [4] provides experimental details and details of
the dataset used. Key outcomes of the experiments are tabu-
lated and interpreted in section[5] Finally, section 6 provides
conclusions and highlights possible future extensions.

2. BACKGROUND

2.1. Speaker Diarization in Autism Diagnosis Sessions

Although there exists a significant amount of work in speaker
diarization of broadcast news and meetings, interest in spon-
taneous and real-life conversations has emerged only re-
cently. Diarization solutions for child speech (both child-
directed and adult-directed) initially looked at traditional
feature representations (MFCCs, PLPs) [13]] and speaker seg-
mentation/clustering methods (generalized likelihood ratio,
Bayesian information criterion) [[14, [15]. In [14]], the authors
introduced several methods for working with audio collected
from children with autism using a wearable device. More
recently, approaches based on fixed-dimensional embeddings
such as ivectors [16] and DNN speaker embeddings such
as x-vectors [[17] were explored. While some of the above
approaches have adapted clustering methods to child speech
[[L7], to the best of our knowledge none of them have taken
into account shifts in domain distribution that is likely to
adversely impact diarization performance.

2.2. Domain Adversarial Learning

Domain adaptation within adversarial learning was first intro-
duced by [11] for computer vision related applications. Since
then, there has been an emerging trend to use domain adver-
sarial learning to alleviate the mismatch between the training
and testing data in various speech applications including ASR
and acoustic emotion recognition [18]]. In [[19}20] the authors
have employed domain adversarial training to improve the ro-
bustness of the speech recognition system to handle different
noise types and levels. In [21]], the authors applied domain ad-
versarial training to address mismatch between close-talk and
single-channel far-field recordings. Our motivation for apply-
ing domain adversarial learning is inspired from recent appli-
cations ([12, 22]) in speaker verification across multiple lan-
guages. It was shown that adversarial training can be used to
learn robust speaker embeddings across different conditions.
We extend this concept to the task of child-adult classification
from speech, where variabilities in children’s linguistic capa-
bilities and recording locations can be viewed as domain shift
that can be modeled using adversarial learning.

3. DOMAIN ADVERSARIAL LEARNING FOR
SPEAKER CLASSIFICATION

The main aim of the work is to efficiently distinguish between
the speakers (namely, child and an adult interlocutor) from

Speaker
Classifier

Generator

Generator Domain
Discriminator

Speaker
Classifier

Generator

Fig. 2: Training and Testing Network Architecture

audio recordings of diagnostic sessions from different clini-
cal locations. Besides learning domain invariant features by
confusing the discriminator, the network must be able to effi-
ciently distinguish between the speakers as well. In this work,
we have shown that the proposed objective can be accom-
plished using a GAN based method, or a GR based method.

Consider samples from the source domain (X, Y;) € Q;
and target domain (X, Y;) € €, with a common label space
Y. During training, labels from the target domain are as-
sumed unavailable, and data distributions of X and X; might
differ. The goal of domain adversarial learning is to maximize
the target accuracy by jointly learning to maximize task per-
formance and reducing domain shift between the source and
target domains in generator output embedding space.

In our work, we begin by training the network with
source data and corresponding speaker labels to minimize
task loss.We refer to this as pre-training. Following, the ad-
versarial game continues where the discriminator is trained
with true domain labels and the generator is trained either
with inverted domain labels (GAN) or reverse gradients (GR)
alternatively until convergence is reached.

In both methods, for every batch of data, the training is
carried out in three distinct steps. In the first step, the gen-
erator and speaker classification models are trained with true
speaker labels from the source data using the following ob-
jective:

Iél,icr*l Lossspr(Xs,Ys) =

2 (1)
Ea, yum(x..vs) D Limy, log(C(G*(x.)))
k=1

where G(.) and C(.) are the generator and classifier func-
tions, respectively. In the second step, the embeddings are ex-
tracted from the output layer of the generator for both source
and target data using the model trained in the previous step.
The domain discriminator is now trained with the true domain
labels. This step ensures that the discriminator is well trained
to distinguish between source and target domain.

mDinLOSSDom(XS,Xt7G): E log(D(G(xs)))+
rs~vXs

E_log(1—(D(G(z1))))

xe~v Xy

2



Table 1: Demographic details of ADOS dataset

Category Statistics
Age(years) Range: 3.58-13.17 (mean,std):(8.61,2.49)
Gender 123 male, 42 female

Non-verbal 1Q Range: 47-141 (mean,std):(96.01,18.79)
86 ASD,42 ADHD
14 mood/anxiety disorder
12 language disorder
10 intellectual disability, 1 no diagnosis
Age Cincinnati: <5yrs 7, 5-10 yrs 52, >10yrs 25
distribution ~ Michigan: <5yrs 11, 5-10 yrs 42, >10yrs 28

Clinical
Diagnosis

The first and second steps are the same for both GAN and GR:
they differ in the third step. For GAN, the generator is trained
with source and target data but with inverted domain labels:

rrgnLossAdv(Xs,Xt,G): E log(D(G(x¢)))+
Xs

E_log(l— (D(G(z)) O

T~ Xt

In case of GR, the gradients from the domain discriminator
are reversed for training. In both the cases, the final step
ensures the generator is trained well to generative domain-
invariant representations. It is important to note that the gen-
erator network weights are updated twice during the adversar-
ial training in first and last step respectively.

4. EXPERIMENTAL SETUP

4.1. Dataset

The ADOS-2 dataset is composed of semi-structured activi-
ties involving a child and an interlocutor, who is trained to ex-
amine behaviours related to ASD. A typical ADOS-2 session
lasts between 40-60 minutes and consists of varying subtasks
designed to elicit responses from the child under different so-
cial and interactive circumstances. In this work, we look at
administrations of Module-3 which are intended for verbally-
fluent children. Further, we restrict to the Emotions and Social
Difficulties & Annoyance subtasks since they elicit sponta-
neous speech from the child under significant cognitive load.
In the Emotions subtask the child is asked to recognize dif-
ferent objects that trigger various emotions within them and
share their perceptions on the same. The Social Difficulties
& Annoyance subtask explores the child’s thoughts regard-
ing various social problems faced at home or school. The
dataset consists of recordings from 165 children (86 ASD, 79
Non-ASD) collected from two different clinical centers: Uni-
versity of Michigan Autism and Communciation Disorders
Center (UMACC) and Cincinnati Children’s Medical Center
(CCHMCO). Further details are presented in Table|T]

4.2. Features and neural network architecture

In all experiments we used 23-dimensional MFCC features
with mean and variance normalized at session level. The
features were extracted using the Kaldﬂ toolkit with a frame-

Uhttps://github.com/kaldi-asr/kaldi

length of 40ms and frame-shift of 20ms. Features were
spliced with a context of 15 frames yielding a sample of
dimension 31x23. Consecutive samples were chosen with
an interval of 15 frames in order to minimize overlap during
DNN training.

The generator G(.) consists of a bidirectional long short
term memory (BLSTM) layer followed by four dense lay-
ers consisting of 128, 64, 16 and 16 neurons respectively.
Certain settings have smaller training data compared to oth-
ers, hence the number of parameters were reduced to prevent
over-fitting. The speaker classifier C|(.) consists of two dense
layers with 16 neurons each, while the domain discriminator
D(.) consists of one dense layer of 16 neurons. Rectified lin-
ear units (ReLU) layers were used as activation functions for
all the layers, and both dropout (p = 0.2) and batch normal-
ization were applied to every hidden layer for regularization.

4.3. Baselines

We have compared the performance of our systems with two
systems. The first system (Pre-Train) is composed of only
the feature generator and the speaker classifier blocks. This
system is trained with source data and directly tested on tar-
get data, the goal being to check whether domain adversar-
ial training provides any improvement over pre-training. The
second model uses the same architecture, except the training
data is augmented with target domain data. Since target la-
bels are not available during domain adversarial training, this
system (Upper-Bound)serves as an upper bound for the per-
formance.

4.4. Cross-Domain Design

To address the variability resulting from child age and loca-
tion differences, we designed two sets of experiments: First,
we partitioned the data according to age groups and chose the
two farthest groups from both locations as the source and the
target data. In (Exp 1), we selected sessions of kids (>10yrs)
as the source and sessions of kids (<5yrs) as target data. Later
in (Exp 2), we reversed the source and target data and repeated
the same experiment to address domain shift in the other di-
rection.

Second, we divided the sessions based on their loca-
tions. To control for variability sources, we further divided
the sessions from each location into 3 age groups of (<5yrs,
5-10yrs, >10yrs) and conducted separate experiments within
each group. In (Exp 3), for each age group we considered
recordings from Cincinnati as source data and recordings
from Michigan as target data. Later, in Exp 4 we reversed the
source and target data and conducted the same experiment).

We check for complementary information in embeddings
extracted from GAN and GR using score fusion and embed-
ding fusion. For the score fusion system, we estimate class
distribution for a test sample by computing posterior means
from GAN and GR models. For the embedding fusion system,
we extract embeddings from the output of the generator block
for both source and target data for GAN and GR. We then
concatenate GAN and GR embeddings and train a separate
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Fig. 3: TSNE plots of the most discriminative 2 components of the generator output corresponding to the classes

Table 2: Mean F1-score (%) treating child age as domain shift

Table 3: Mean F1-score (%) treating collection center as do-
main shift

Systems Exp 1(%) Exp 2(%)
Pre-Train 73.40 63.69
GAN 78.27 71.21
GR 78.53 72.26
Score Fusion 78.86 71.61
Embed. Fusion 78.38 71.95
Upperbound 85.65 86.29

Exp 3(%) Exp 4(%)

Systems <Syrs S-nyrs >10yrs  <S5yrs S-ﬁ)yrs > 10yrs
Pre-Train 79.55 79.23 67.69 82.12 78.16 72.68
GAN 82.14 80.32 73.32 85.03 82.32 76.72
GR 81.74 80.60 73.57 84.53 82.96 76.61
Score Fusion 82.13 80.64 7346  85.21 83.20 76.85
Embed. Fusion  82.39 80.31 73.19 82.72 82.87 75.33
Upper-bound ~ 87.72 87.56 86.74  90.67 89.47 87.80

neural network model with similar architecture to the GAN
and GR models, using the source data. Finally, the fused em-
beddings of the target data are fed to the trained network to
check classification performance.

For all experiments, we update model weights using
Adam optimizer (Ir = 0.001, 51 = 0.9, B2 =0.999, € = 1e—8)
to minimize categorical cross-entropy loss. Accuracy on a
set of held-out sessions from the source corpora is used for
early stopping during both pre-training and domain adver-
sarial training. During evaluation, we discard the domain
discriminator part. The 23-dimensional features from the au-
dio session are fed to the network consisting of the generator
G(.) and the speaker classifier C|(.) to estimate speaker labels
at sample-level. Since many sessions in our corpus contain
imbalanced class distributions (more samples from adult than
child), we estimate classification performance using the mean
(unweighted) F1-score.

5. RESULTS AND ANALYSIS

From Tables[2]and 3} we observe that both GAN and GR out-
perform the baselines in age-based and location-based exper-
iments. In general, GR performs slightly better than GAN
in a majority of settings. Among the age-based experiments,
we observe that Exp 2 which consists of kids aged >10yrs
as target data, degrades in accuracy for all models. A possi-
ble reason is that older kids with well-developed vocal tract
and speaking skills are harder (i.e., more confusable) for the
model to discriminate from adult speakers. Interestingly, do-
main adaptation returns a greater relative improvement over
pre-training in Exp 2 (13.45%) than Exp 1 (7.43%).

Among the location-based experiments, the age group
>10 yrs possibly represents the largest domain shift (on the
basis of Pre-Train vs Upper-Bound performances). Similar
to the age-based experiment, domain adversarial learning

returns the largest relative improvement for kids >10 yrs. In-
terestingly, improvements in adversarial learning for kids in
5-10yrs age group are different in Exp 3 and Exp 4. This hints
that domain shifts (in this age group) are currently modeled
to different extent by GAN and GR, indicating that different
modeling techniques should be explored to address this issue.
Score fusion performs the best among all the proposed meth-
ods, suggesting the presence of complementary information
between GAN and GR methods.

As a qualitative analysis, we present TSNE visualizations
of the generator outputs for target data from two sessions of
Exp 4 in Figure [3] We plot the embeddings before and after
GAN training. In both cases, it is evident from the plots that
pre-trained embeddings exhibit confusion between child and
adult classes, while GAN training increases the discriminative
information between them.

6. CONCLUSION

Previous studies have established the potential of adversar-
ial learning for addressing domain mismatch. In this work,
we have applied domain adversarial training to enhance the
speaker classification performance in autism diagnosis ses-
sions. We have used 2 different methods (GAN and GR) for
learning domain invariant features, and show that domain ad-
versarial training improves the speaker classification perfor-
mance by a significant margin. Further, we improved the per-
formance further by fusing at the embedding-level and score-
level. While our proposed approaches provide improvements
over the baseline, the possible upper bound performance im-
plies still significant room for improvement. In the future, we
would like to extend adversarial learning to different GAN
variants and tasks in the speech pipeline, for example, child
ASR.
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