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ABSTRACT

We propose a simplified and supervised i-vector modeling scheme

for the speaker age regression task. The supervised i-vector is ob-

tained by concatenating the label vector and the linear regression

matrix at the end of the mean super-vector and the i-vector factor

loading matrix, respectively. Different label vector designs are pro-

posed to increase the robustness of the supervised i-vector models.

Finally, Support Vector Regression (SVR) is deployed to estimate

the age of the speakers. The proposed method outperforms the con-

ventional i-vector baseline for speaker age estimation. A relative

2.4% decrease in Mean Absolute Error and 3.33% increase in cor-

relation coefficient is achieved using supervised i-vector modeling

using different label designs on the NIST SRE 2008 dataset male

part.

Index Terms— Supervised i-vector, i-vector, speaker age re-

gression, age recognition, simplified supervised i-vector

1. INTRODUCTION

Speech contains valuable information about the linguistic context as

well as speaker identity and paralinguistic information about speaker

state and speaker trait. These include information such as the emo-

tional state, gender and age [1]. Age can be an important source of

information in many user centered applications. In certain scenarios,

speech is the only source of data available. Systems that estimate age

from speech utterances can have wide applications. These include

automating entries to places which require a minimum or maximum

age, targeted advertisement, effective call diverting in call centers,

personalized educational systems amongst others. Robust speaker

age estimators could also benefit speech recognition problems aris-

ing due to speaker age variation [2].

Speaker age regression is a difficult estimation problem for sev-

eral reasons. First, the large difference between perceptual age (as

perceived by humans from speech cues) and chronological age [3]

makes it a tough problem as compared to language recognition, and

speaker recognition where the references are closely matched with

the data characteristics. Second, speaker age is a continuous variable

making it difficult to estimate by machine learning methods work-

ing with discrete labels. Research groups have treated it either as

a classification [4][5] or as a regression problem [6]. Third, very

few publicly available age labeled data sets exist which have ade-

quate number of speech utterances from a variety of age groups. Fi-

nally, speech contains significant intra-age variability due to identity,

speaking style, speech content, emotional states, etc., which makes

the speakers of same age sound different [6].

Several systems have been proposed for estimating age using

speech [6][7][4][5]. We discuss methods and results that are closely

related to ours and those that have motivated the present work. Re-

cently, total variability i-vector modeling with backend variability

compensation has gained significant attention in language recogni-

tion [8] and speaker verification [9] domains due to its excellent per-

formance, low complexity and compact representation.

Bahari et al. [6] model speaker utterances by well known tradi-

tional i-vectors and use Support Vector Regression (SVR) to achieve

a best mean absolute error (MAE) of 7.6 years. However, using

speaker age as label information for Within Class Covariance Nor-

malization (WCCN) and Linear Discriminant Analysis (LDA) was

reported to be not effective which motivates our study.

Bocklet et al. [10] combine age and gender classification as a 7

class age-gender problem using GMM supervectors based Support

Vector Machines (SVM) on the SpeechDat 2 corpus. The best over-

all precision is 77%. The 4 age groups are chosen as Children (< 13

years), Young (14-19 years), Adult (20-64 years), Senior (> 64

years) in their study for both males and females. Three well known

kernels were used: polynomial, radial basis function (RBF) and a

GMM based distance kernel. In most similar age classification sys-

tems the Adult age group has a wide range (almost 45 years) making

such classification systems less suited for certain applications. This

also serves as a motivation for us to consider the age estimation as a

regression problem rather than a classification problem.

In a related work [11], Li et al. have proposed a simplified super-

vised i-vector model for speaker verification. The traditional i-vector

was extended to a label supervised i-vector by concatenating a binary

label vector and the linear classifier matrix at the end of the mean

supervector and the i-vector factor loading matrix, respectively. The

supervised i-vector was shown to be more discriminative.

In this paper, we apply the simplified and supervised i-vector

framework [11] to the age regression task. We modify the process

of traditional i-vector training by adding the age label information

of the training data to form a supervised i-vector framework. We

propose novel label vector designs and evaluate their performances

under the age regression task on the NIST SRE 2008 dataset.

2. AGE REGRESSION USING DIFFERENT I-VECTOR

METHODS

2.1. The i-vector

Fig. 1. depicts the i-vector generation process. A given speech ut-

terance is represented by a new vector called the i-vector x. The ad-

vantage of the i-vector is that the high dimensional GMM mean su-

pervector, F̃ , obtained by concatenating the 1
st order Baum-Welch

statistics vector, can be represented by a low dimensional i-vector

with the corresponding subspace. The objective behind the process

is to project the supervector into a low dimensional subspace such
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Fig. 1. The I-vector framework

that the sum of the prior and the supervector reconstruction error is

minimized.

2.2. The Supervised i-vector

Fig. 2 depicts the framework of the supervised i-vector. The i-vector

training is supervised by concatenating the label vector at the end

of the GMM mean supervector, F̃ . The linear regression matrix is

appended at the end of the total variability matrix, T , to reconstruct

the label. This supervised i-vector, x, is optimized not only to recon-

struct the mean supervectors well but also to predict the age label.

2.3. The Simplified Supervised i-vector

In this work, we adopted the framework in [11] to apply a simpli-

fied version of both i-vector and supervised i-vector to reduce the

complexity involved.

2.4. Intersession Compensation

In i-vector modeling, the total variability space contains both the

speaker and the channel variabilities together, hence session vari-

ability compensation needs to be used. In the case of the speaker

age estimation problem, session variation makes utterances from the

same age class sound different. It may be due to factors like gender,

language, transmission channels, microphone types, emotional con-

dition or even the speaking style variability. Variability compensa-

tion aims to reduce the within-class variance and allow the modeling

technique to observe the inter-class information more effectively. We

look at two well known intersession compensation techniques, LDA

and WCCN.

LDA is used for dimensionality reduction. It seeks new orthog-

onal axes to make different classes better discriminated from one

another. The axes are such that the inter-class variance is increased

and the intra-class variance is decreased [12].

WCCN aims to reduce the within class covariance by normaliz-

ing the i-vectors which is typically useful for verification tasks [13].

In our experiments, for both WCCN and LDA, we consider each

unique age category in the training dataset as a class.

3. LABEL MODELING TECHNIQUES

For the task of Speaker Age regression, we need to consider each

individual age as a class and make each class more separable from

the other. Suppose there are M different classes to which speakers

belong in the training data then the label matrix L is M x Γ where

Γ is the total number of utterances in the training data set. In this

section we propose different label vector designs.

Fig. 2. The Supervised I-vector framework

3.1. Binary Labels

The default label design in [11] is the binary label where every age

label dimension is given a binary value 1 or 0 depending on whether

the utterance belongs to this particular class or not. It is defined as

follows:

Lij =

{

1 if utterance j is from age class i

0 otherwise
(1)

If there are M age classes, then Lj is a M dimension binary vector.

3.2. Gaussian Labels

The large difference between the perceived age and the chronologi-

cal age motivated us to assign soft weights to each class. For exam-

ple, a speaker of age 28 may sound similar to those in the near vicin-

ity of that age. The class to which the utterance belongs is given the

maximum weight and the adjacent classes are given smaller weights.

For each particular age value, the corresponding label vector is gen-

erated by a Gaussian type histogram. The Gaussian was centered on

the actual age category it belonged to and the standard deviation (σ)

of the Gaussian was varied to check the performance of the super-

vised i-vector. The Gaussian was sampled at each age category in the

soft label vector, x, to get its appropriate weight for that particular

age class, i.

Li = e
−(x−i)2

2σ2 (2)

The standard deviation, σ, captures the range of ages which

sound similar. We have incorporated the notion that a speech from

a specific age sounds similar to the neighboring age classes. Using

different σ gives us control over the size of these neighbouring age

groups.

Psychoacoustic studies [3] show that younger and elderly age

groups are more distinctive than the mid-range age groups. This mo-

tivated us to assign a Gaussian distribution to σ such that σ is lower

for younger and elder age classes and higher for the mid-range age

classes. This is a challenging task due to limited pre-knowledge and

extensive parameter tuning. This in turn motivates us to construct

and evaluate data driven models.

3.3. Data Driven Labels

The motive behind constructing data-driven labels is to discern how

the i-vector captures the variability of age. Once we know how dif-

ferent one age is with respect to all the other ages, then we could

embed this information in the i-vector training by using supervised i-

vector concept to further increase the performance. First we explore

methods to analyze the variability of age modeled in the i-vector

space and then further use this information in our label matrix L to

achieve better performance.
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Fig. 3. Data Driven Labels for 3 age groups

To achieve this, we compute the mean i-vector for each speaker.

This gives us a single i-vector representation for each speaker. Then

the mean i-vector for each age class is computed on top of those

speaker i-vectors. This is the i-vector representation for that age

class. This is done for all age classes present in the training dataset.

Finally, the euclidean distance between the features of each age class

and all the other classes are computed. This gives a confusion matrix

(with zeroes as the diagonal elements) of dimension M x M, where

M is the number of unique age classes in the training dataset. The

matrix is then normalized and each element in the matrix subtracted

from 1. Hence we obtain a matrix having ones as the diagonal ele-

ments indicating highest weight assigned to the age class to which it

belongs.

3.3.1. 2-pass data driven system

We run 2-passes for training, once using the traditional baseline i-

vector, which is used to calculate the datadriven labels and then fi-

nally use this label for supervised training during the 2nd pass. Fig.

4 depicts the confusion matrix for our training data. This informa-

tion can be viewed as the perceived age for each age class by the

machine. We replace the chronological labels with the perceived

ones as the label matrix in the supervised i-vector training. Fig. 3

shows the perceived age by machine for 3 different age classes (23,

35 and 48 years) for our training data. One can see that the age from

young adults (23) are more confused with their neighbors.

3.3.2. 1-pass data driven system

To reduce the complexity and time required for 2-passes, we use

adaptive datadriven labeling. The label matrix L adapts during each

iteration of Expectation Maximization. Initially for the 1st iteration,

since we don’t have an estimate for the label matrix, we need to em-

ulate the traditional i-vector using the supervised version. This can

be achieved by initializing the covariance of the label reconstruction

to infinity. Later, after the expectation step of the algorithm we cal-

culate the datadriven labels for that iteration which will be used as

the label vector L during the next iteration.

4. EXPERIMENTS

4.1. Database

The NIST SRE 2010 data [14] was used for training and the NIST

SRE 2008 data was adopted for testing the SVR based estimation.

The experiment was carried only for male speakers of the NIST 2010

and 2008 databases. The NIST 2010 set consists of 2611 utterances

of male speakers with 49 unique age classes ranging from 19 to 87

years and NIST 2008 consists of 2147 utterances of male speakers
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Fig. 4. Confusion Matrix for the 2-pass data driven system

with 52 unique age classes ranging from 17 to 80 years. The to-

tal variability matrix construction used 12060 utterances from male

speakers (NIST 2010 (2611) + Switchboard Data (9449)). It is worth

noting that the SVR training and testing data are the same as [6]. But

we did not add NIST 04 05 06 data into the i-vector or supervised

i-vector training as [6] did due to the absence of the speaker age

labels.

4.2. Experimental Setup

For MFCC feature extraction, a 25ms Hamming window with 10ms

shifts was adopted. A 36 dimensional MFCC feature vector was ex-

tracted consisting of 18 MFCC coefficients and their first derivatives.

We used gender-dependent UBMs containing 1024 Gaussians and

trained from NIST 2004 and NIST 2005 data. For our experiments

we set the dimension of the i-vector to 400 to compare results with

[6]. For regression, libsvm [15] was used for nu-SVR with Radial

basis function as the kernel.

4.3. Performance Evaluation

In [6] Mean Absolute Error (MAE) is used to evaluate the perfor-

mance of the system. The MAE is calculated as follows:

MAE =
1

Q

Q
∑

q=1

|ŷq − yq| (3)

where ŷq and yq are the predicted and the actual age from the

qth utterance of the testing data, respectively. Q is the total num-

ber of utterances in the testing data. Along with MAE, we also use

Pearson’s linear correlation coefficient (CORR) as an evaluation pa-

rameter for our experiments. CORR is a more reliable parameter

compared to MAE for regression problems [16].

5. RESULTS AND DISCUSSIONS

Table 1 shows the result for the simplified versions of the i-vector

and the supervised i-vector framework. Table 2 shows the result for

the full versions of the i-vector and the supervised i-vector frame-

work. For each version, we compare the performance of supervised

i-vectors with our proposed label designs with respect to the baseline

traditional i-vector in each of these 2 cases.

5.1. Simplified i-vector

Simplified version decreases the complexity and takes about 0.78%

time of the full version with minimal loss in performance. Using

the simplified i-vector reduces the performance by a relative 1.7%
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Table 1. Performance of simplified versions of i-vectors.

Method Label Design LDA WCCN MAE CORR

SIM IV - × × 8.4671 0.4545

SIM IV - X × 8.4919 0.4605

SIM IV - × X 8.3797 0.4516

SIM SUP B × × 8.5016 0.4476

SIM SUP B X × 9.0616 0.4388

SIM SUP B × X 8.1962 0.4742

SIM SUP G1 × × 8.2899 0.4838

SIM SUP G1 X × 8.4387 0.4662

SIM SUP G1 × X 8.381 0.4834

SIM SUP G2 × × 8.3149 0.4763

SIM SUP G2 X × 8.4368 0.465

SIM SUP G2 × X 8.2284 0.4826

SIM SUP 2P-DD × × 8.3785 0.4625

SIM SUP 2P-DD X × 8.6059 0.4490

SIM SUP 2P-DD × X 8.2805 0.4616

SIM SUP 1P-DD × × 8.3019 0.4711

SIM SUP 1P-DD X × 8.2855 0.4786

SIM SUP 1P-DD × X 8.2061 0.4792

SIM IV: Simplified i-vector, SIM SUP: Simplified Supervised i-vector

1P-DD: 1-pass Datadriven, 2P-DD: 2-pass Datadriven, G1: Gaussian

σ=3, G2: Gaussian σ=N(30,10), B: Binary

(MAE) and 2.42% (CORR) as compared to the traditional i-vector.

The traditional i-vector and the simplified i-vector results are used as

the baseline for evaluating the supervised i-vector and the simplified

supervised i-vector respectively.

5.2. Simplified Supervised and Supervised i-vectors

5.2.1. Binary label modeling

For both the supervised i-vector and the simplified supervised i-

vector, the binary label design did not improve the performance with-

out WCCN. This might be because our focused age estimation task

is a regression task and hence directly assigning binary labels in

the i-vector training may not lead to the improvement in regression.

However, it makes the supervised i-vector more suitable for WCCN

which is also based on discrete age classes. We can observe that ap-

plying the backend WCCN improved the MAE by 3.2% and CORR

by 4.33% as compared to the baseline simplified i-vector and 2.4%

(MAE) and 3.33% (CORR) as compared to the full version of the

baseline i-vector.

5.2.2. Gaussian label modeling

For both the supervised i-vector and the simplified supervised i-

vector, the Gaussian label designs show significant increase in per-

formance as compared to the binary labels as well as the baseline

systems before WCCN which indicates the effectiveness of adding

age information in the i-vector training. Different values of σ are

used to evaluate the Gaussian label design. Best performance was

obtained using σ = 3 (see Table 1.). An increased performance of

0.28% (MAE) and 1.33% (CORR) is obtained for the supervised i-

vector and 2.1% (MAE) and 6.44% (CORR) is obtained for the sim-

plified supervised i-vector. Further improvement of 0.65% (MAE)

and 3.43% (CORR) is achieved for the supervised i-vector over the

baseline i-vector when combining WCCN.

5.2.3. Data Driven Labels

The data driven labels outperform both the binary and the Gaussian

label design and has the best results as compared to the full-version

baseline systems without intersession compensation. The 1-pass sys-

tem outperforms the 2-pass datadriven system in both the simplified

Table 2. Performance of Full versions of i-vectors.

Method Label Design LDA WCCN MAE CORR

IV - × × 8.3253 0.4658

IV - X × 8.3176 0.4653

IV - × X 8.299 0.4601

SUP B × × 8.4654 0.4689

SUP B X × 8.5556 0.4426

SUP B × X 8.1257 0.4813

SUP G1 × × 8.3016 0.472

SUP G1 X × 8.5637 0.446

SUP G1 × X 8.2713 0.4818

SUP 2P-DD × × 8.6242 0.4476

SUP 2P-DD X × 8.6973 0.4344

SUP 2P-DD × X 8.2675 0.4648

SUP 1P-DD × × 8.2618 0.4675

SUP 1P-DD X × 8.3226 0.4643

SUP 1P-DD × X 8.1879 0.4776

IV: i-vector, SUP: Supervised i-vector

and the full versions. This is because in the 1-pass system we are

incorporating the supervised system to calculate the confusion ma-

trix, whereas in the 2-pass system the confusion matrix is calculated

using traditional i-vectors.

For the 1-pass the best results are obtained using WCCN with

an increase in 1.65% (MAE) and 2.53%(CORR). For the simpli-

fied version an increase in performance 3.08% (MAE) and 5.43%

(CORR) is observed.

For the 2-pass the best results are obtained using WCCN with

an increase in 0.69% (MAE). For the simplified version an increase

in performance 2.2% (MAE) and 1.56% (CORR) is observed.

5.3. Intersession Compensation

Variability compensation techniques such as LDA and WCCN were

applied. In all cases LDA did not help for both MAE and CORR

(see Table 1, 2) whereas WCCN improves the performance in all

cases of the supervised i-vectors. The performance of WCCN is

highest in Binary labels. This is because the Binary label design

vector performs hard discrimination between age classes whereas

the Gaussian label/Data Driven design vector assigns soft labels be-

tween age classes. Thus, there is no clear individual class assigned

which leads to relatively poor performance of WCCN for the Gaus-

sian/Data Driven label designs with respect to Binary Labels.

6. CONCLUSIONS

In this paper, we showed that the supervised i-vector outperforms the

i-vector baseline for the speaker age regression problem by a statis-

tically significant margin (p < 0.05) when using MAE and CORR

as an evaluation parameter. Novel label vector modeling techniques

have been proposed to improve the performance of the supervised

i-vector modeling and better reflect the gradient nature of age esti-

mation. The performance of the proposed system is compared with

the current state of the art method with promising results.

The 1 pass data driven labels (supervised i-vector framework)

gave the best results for systems without inter-session compensa-

tion. Using WCCN for intersession compensation, a further increase

in performance was obtained for all the label designs in the super-

vised and simplified supervised i-vector framework. The best per-

formance using WCCN was obtained using the Binary Label design

improving the MAE by 3.2% and CORR by 4.33% as compared to

the baseline simplified i-vector and 2.4% (MAE) and 3.33% (CORR)

as compared to the full version of the baseline i-vector.
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