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Abstract
The movements of the different speech articulators are known to
be correlated to various degrees during speech production. In this
paper, we investigate whether the inter-articulator correlation is
preserved among the articulators estimated through acoustic-to-
articulatory inversion using the generalized smoothness criterion
(GSC). GSC estimates each articulator separately without explic-
itly using any correlation information between the articulators.
Theoretical analysis of inter-articulator correlation in GSC reveals
that the correlation between any two estimated articulators may
not be identical to that between the corresponding measured ar-
ticulatory trajectories; however, based on smoothness constraints
provided by the real articulatory data, we found that, in practice,
the correlation among articulators is approximately preserved in
GSC based inversion. To validate the theoretical analysis on inter-
articulator correlation, we propose a modified version of GSC
where correlations among articulators are explicitly imposed. We
found that there is no significant benefit in inversion using such
modified GSC, which further strengthens the conclusions drawn
from the theoretical analysis of inter-articulator correlation.
Index Terms: acoustic-to-articulatory inversion, inter-
articulation correlation, generalized smoothness criterion

1. Introduction
Estimation of representations in the articulatory space from
representations in the acoustic space is known as acoustic-to-
articulatory inversion. In this paper, we consider the problem
of estimating articulatory position vector sequence (or trajectory)
from a given MFCC (Mel Frequency Cepstral Coefficients of
short time acoustic speech signal frames) vector sequence. Ex-
emplary articulatory vectors can correspond to the positions (i.e.,
X and Y values in mid-sagittal plane) of the upper lip (UL), lower
lip (LL), lower incisor (LI), tongue tip (TT), tongue body (TB),
tongue dorsum (TD), and the velum (V), as considered in this pa-
per.

Previous studies have provided evidence that the mapping
between the acoustic and articulatory spaces is not unique [1].
Therefore, many inversion techniques [2, 3, 4, 5, 6, 7, 8, 9] have
been proposed where issues of non-uniqueness are mitigated by
constraining the articulator trajectories to be smooth – e.g., low-
pass filtering the estimated articulator trajectories [7, 8, 9]. We
recently introduced a technique for incorporating the smooth-
ness constraint inside the optimization problem using generalized
smoothness criterion (GSC) [2]. In contrast to other inversion
techniques, GSC estimates each articulator trajectory in an inde-
pendent fashion using the acoustic feature sequence from a test
utterance. However, it is well known that many of the measured
articulators’ movements can be correlated with one another [10].
For example, the upper and lower lips’ movements are correlated
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since they move together to create lip opening and closure. Sim-
ilarly since TT, TB, TD are three locations on the same physical
tongue organ and, hence, their movements are expected to be cor-
related too. It is however not clear whether the GSC formulation
preserves the inter-articulator correlation since it estimates each
articulator independently.

In this work, we perform a theoretical analysis on the corre-
lations among articulators estimated using GSC and derive their
relations to the correlations among measured articulatory trajecto-
ries. Based on the analysis of inter-articulator correlation in GSC
we show that, theoretically, there is no guarantee that GSC pre-
serves the inter-articulator correlation as observed in the training
data. However, when the theoretical analysis is examined with
respect to real articulatory data, we found that the differences
between the correlations among estimated articulators and those
among measured articulators are not significant. Thus, it turns out
that, in practice, the correlation among articulators estimated by
GSC are approximately similar to those among measured articu-
lators.

To further validate this inter-articulator correlation prop-
erty of GSC, we develop a way within the GSC framework by
which inter-articulator correlation can be explicitly imposed in
the acoustic-to-articulatory inversion such that the empirical cor-
relation coefficient between any two estimated articulatory trajec-
tories will be identical to that between the respective articulatory
variables (measured) in training data. The accuracy of the in-
version obtained by exploiting the inter-articulator correlation is
compared experimentally against the accuracy obtained by treat-
ing each articulator independently during inversion using GSC
[2]. Based on the comparison, we observe that there is no sig-
nificant benefit in explicitly imposing correlation in the inversion
using GSC, which further justifies the validity of the theoretical
analysis.

2. Dataset and pre-processing

For the analysis and experiments of this paper, we use the Multi-
channel Articulatory (MOCHA) database [11] containing acous-
tic and corresponding articulatory ElectroMagnetic Articulogra-
phy (EMA) data from one male and one female subject. The ar-
ticulatory position data have high frequency noise resulting from
EMA measurement error. Also the mean position of the artic-
ulators changes from utterance to utterance; hence, the position
data needs pre-processing before it can be used for analysis. Fol-
lowing the pre-processing steps as outlined by Ghosh et al. [2],
we obtain parallel acoustic and articulatory data at a frame rate
of 100 observations per second. Of the 460 utterances available
from each subject, data from 368 utterances (80%) are used for
training, 37 utterances (8%) as the development set (dev set), and
the remaining 55 utterances (12%) as the test set.
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3. Generalized smoothness criterion (GSC)
for articulatory inversion

In this section, we briefly describe the principle of GSC [2] for in-
version. Let {(zi, xi) ; 1 ≤ i ≤ T} represent the parallel acous-
tic feature vector and articulatory position vector pairs in the train-
ing set, where zi and xi represent the ith acoustic and articula-
tory vector respectively. xn=[x1

n x2
n · · · x14

n ]T, where the 14
elements correspond to X and Y co-ordinates of seven articula-
tors considered in this work. [·]T denotes the transpose operator.
Now suppose, for the acoustic-to-articulatory inversion, a (test)
speech utterance is given and the acoustic feature vectors com-
puted for this utterance are denoted by {un; 1 ≤ n ≤ N}. The
GSC is used to estimate the jth articulatory position trajectory˘
xj

n; 1 ≤ n ≤ N
¯
by solving the following optimization prob-

lem [2]:

arg min
{x

j
n}

"X
n

“
yj [n]
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X
n

X
l

“
xj

n − ηl,j
n
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pl
n

#
, (1)

where, yj
n =

PN

k=1 xj

khj

n−k and hj
n is an articulator specific

high-pass filter with cut-off frequency f j
c . Thus the first term

on the right hand side of Eq. (1) is used to minimize the high
frequency components in xj

n so that the articulator position tra-
jectory is smooth.

˘
ηl,j

n ; 1 ≤ l ≤ L
¯
are the L possible values of

the jth articulatory position at the nth frame of the test speech
utterance and pl

n are their probabilities [2]. Cj is the trade off
parameter between two terms in the objective function (Eq. (1)).

The solution of Eq. (1) for the jth articulator can be written
as

x
j� =

“
R

j + CjI

”-1
d

j , (2)

where, xj� = [xj�
1 ... xj�

N ]T is the optimal articulatory trajectory.
R

j =
˘
Rj

pq

¯
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N pl
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Note that the solution (Eq. (2)) can be obtained recursively with
frame index n without any loss in accuracy [2].

4. Correlation among estimated articulator
trajectories

We theoretically investigate how the correlations among esti-
mated articulatory trajectories in GSC differ from those among
the measured articulatory trajectories.

From Eq. (2), we can write (for i �= j) the estimated articula-
tory trajectory in the following way:(

xj�
n =

PN

m1=1 am1
Cj

PL

l=1 ηl,j
m1

pl
m1

xi�
n =

PN

m2=1 bm2
Ci
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pl
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(3)

where, {am1
, 1 ≤ m1 ≤ N} and {bm2

, 1 ≤ m2 ≤ N} are
the nth rows of

`
R

j + CjI
´-1 and `Ri + CiI

´-1 respectively.
Let us assume ηl

n, i.e.,
ˆ
ηl,1

n , · · · , ηl,14
n

˜
, is i.i.d. random vector

∀l, n. Also let the jth and ith articulators, i.e., ηl,j
n & ηl,i

n , have
correlation co-efficients ρji. In other words,
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where, E[·], V[·], and COV[·, ·] denote the mean, variance, and
covariance of the random variables. δm,n is the kronecker delta,
i.e., δm,n = 1, when m = n and δm,n = 0, when m �= n.
Therefore, the mean of xj�

n and xi�
n are as follows:
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And, the covariance between the jth and ith estimated articulators
is
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Hence, the correlation coefficient between the estimated jth and
ith articulators, i.e., xj�

n & xi�
n is
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Thus, the correlation ρ�
ji between the jth and ith articulator

trajectories estimated using GSC is not necessarily identical to
the inter-articulator correlation ρji in the training set. It is im-
portant to note that when the cut-off frequencies of the jth and
ith articulator-specific filters are nearly identical, their impulse
responses (i.e., hj

n and hi
n) and hence the correlation matrices

R
j and R

i are approximately same. In addition, if the trade-off
parameters of the respective articulators, i.e., Cj and Ci, are sim-
ilar, then am ≈ bm, 1≤ m ≤ N because {am1

, 1 ≤ m1 ≤ N}

and {bm2
, 1 ≤ m2 ≤ N} are the nth rows of

`
R

j + CjI
´-1

and
`
R

i + CiI
´-1 respectively. Under such circumstances (i.e.,

am ≈ bm), it is easy to see that ρ�
ji ≈ ρji; this means that when

am ≈ bm, the correlation is approximately preserved among the
articulators estimated by GSC. However, as shown by Ghosh et al.
[2], neither f j

C norCj is identical across different articulators and,
hence, we compute ρ�

ji/ρji (from Eq. (9)) for each test utterance.
Fig. 1 demonstrates the average values of ρ�

ji/ρji for each pair of
articulatory variables (j-th and i-th, 1≤ j, i ≤14) separately for
each subject in the MOCHA database. Note that standard devia-
tion (SD) of ρ�

ji/ρji over all test utterances is minimal (maximum
SD among all pair of articulatory variables is 5.54×10−5).
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Figure 1: ρ�
ji/ρji for all pairs of articulators for (a) female (b)

male subjects in the MOCHA database. i and j vary over articu-
latory variable index 1,...,14.

It is clear from Fig. 1 that ρ�
ji/ρji is very close to 1 for all

pairs of articulators and hence ρ�
ji is approximately same as ρji

for each subject in the MOCHA database. Therefore, in practice
GSC approximatley preserves the inter-articulator correlation al-
though theoretically the correlation among estimated articulators
is not identical to that among measured articulatory variables.

To further validate this conclusion based on this theoreti-
cal analysis, we develop a modified version of GSC framework
where inter-articulator correlation is explicitly imposed among
estimated articulators during inversion. The goal is to examine
where there is any significant benefit in inversion by explicitly
preserving the inter-articulator correlation and thereby examine
the validity of the theoretical analysis above.

5. Modified GSC to preserve
inter-articulator correlation

From Eq. (9) it is worth noting that if the variables in the train-
ing set (ηl,j

n & ηl,i
n ) were uncorrelated (i.e., ρji = 0), then the

estimated trajectories (xj�
n and xi�

n ) would also be uncorrelated
(i.e., ρ�

ji=0). This observation motivates us to transform the artic-
ulatory position variables,

˘
xj

n; j = 1, ..., 14
¯
, into another set

of variables,
˘
x̃j

n; j = 1, ..., 14
¯
, where x̃j

n and x̃k
n are uncorre-

lated ∀ j, k. The GSC can be used in the transformed variable
domain for inversion and, after inversion, the correlation between
variables can be imposed by transforming them back to the orig-
inal articulatory position variable domain. Whitening is one of
the approaches where a random vector (xn, in our case) is lin-
early transformed to make its components uncorrelated [12]. We
transform xn to obtain x̃n.

5.1. Transformation of the articulatory position vector

Let μx and Kxx, respectively, be the mean vector and the co-
variance matrix of the random vector xn. Let the eigen decom-
position ofKxx=V ΛV T, where V is the orthogonal eigenvector
matrix (V TV = I) and Λ is the diagonal eigen value matrix. The
following linear transformation whitens xn to the random vector
x̃n; the components of x̃n are uncorrelated as it is easy to show
that x̃n has a diagonal covariance matrixKx̃x̃.

x̃n = V Txn (10)

where, μx̃ = E (x̃n) = V Tμx, Kx̃x̃ = V TKxxV = Λ.

Note that the component of x̃n does not correspond to any physi-
cally meaningful articulatory parameters any more. However, xn

can be recovered from x̃n by xn =
“
V T
”−1

x̃n = V x̃n.

5.2. Frequency analysis of the transformed variables

In the GSC formulation [2], the cut-off frequencies of the artic-
ulator specific high-pass filters hj

n are determined based on the
analysis of the frequency content of all articulatory position vari-
ables

˘
xj

n; j = 1, ..., 14
¯
. Similarly, to estimate x̃j

n using GSC,
we need to analyze the frequency content of the transformed vari-
ables

˘
x̃j

n; j = 1, ..., 14
¯
to determine the cut-off frequency of

the high-pass filters in the transformed variable domain. We cal-
culate the frequency f j

c below which α% of the total energy of the
transformed variable trajectory is contained. This is done for each
utterance in the training set and the mean f j

c (along with standard
deviation (SD)) over all utterances is calculated for α=90, 95. It
is found that the range of f j

c for most of the transformed variables
x̃j

n is similar to what was observed in the frequency analysis of
the articulator position variables in xj

n [2]. This is expected since
x̃j

n is a linear combination of the articulator position variables xn.
This analysis will help us choose the cut-off frequencies while de-
signing filters hj

n, ∀j in GSC.

5.3. Inversion using transformed articulatory features

Since we do not know the true covariance matrixKxx of xn, we
estimate Kxx using the realizations of xn in the training set as
follows:

Kxx =
1

T − 1

TX
n=1

(xn − x̄) (xn − x̄)T (11)

where x̄ = 1
T

PT

n=1 xn. Using eigen-decomposition of esti-
mated Kxx, we obtain the eigenvector matrix V , which is used
to transform xn vectors of training, dev and test set to x̃n (us-
ing Eq. (10)), where variables are uncorrelated. Parallel acoustic
vectors and transformed articulatory vectors x̃n of the training set
are used to estimate ηl,j

n and pl
n in a way similar to that described

by Ghosh et al. [2]. The GSC (Eq. (1)) is used to estimate the
trajectories of x̃j�

n , ∀ j = 1, ..., 14 separately using the acoustic
data of the test set. Finally, xj�

n , ∀ j = 1, ..., 14 are obtained
by transforming x̃

�
n back using x

�
n =[x1�

n x2�
n · · · x14�

n ]T =

V x̃
�
n = V [x̃1�

n x̃2�
n · · · x̃14�

n ]T. By this reverse transformation,
we correlate different variables so that correlation among them is
similar to the inter-articulator correlation observed in the training
data. Note that the transformation matrix (V ) is learned on the
training set. Therefore, it is assumed that correlations between
different articulator positions in the test set are similar to those in
the training set.

5.4. Articulatory inversion results using modified GSC

The proposed approach of utilizing inter-articulator correlation
for acoustic-to-articulatory inversion is evaluated separately for
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the male and female subjects data in the MOCHA-TIMIT corpus
[11]. The accuracy of the inversion is evaluated separately on
the test set for both subjects in terms of both root mean squared
(RMS) error and Pearson correlation co-efficient [13] between the
actual articulatory position in the test set and the position esti-
mated by GSC. The RMS error E reflects the average closeness
between actual and estimated articulator trajectories. The corre-
lation ρ indicates how similar the actual and estimated articulator
trajectories are.

The dev set is used to tune the cut-off frequency f j
c of filter

hj
n and the trade-off parameter Cj . For our experiment we con-
sidered L=200. Increasing L further did not improve the result.
For designing articulator specific high-pass filters hj

n, we consid-
ered an IIR high pass filter with cut-off frequency f j

c and stop-
band ripple 40 dB down compared to the pass-band ripple similar
to that used by Ghosh et al [2]. From Section 5.2, we observed
that most of the energy of the transformed variables is below 9-
10 Hz and, hence, we choose values of f j

c from the following set˘
f j

c

¯
=
n
1.5 + (k−1)

19
(7.5) ; k = 1, · · · , 20

o
. Similarly, the set

of values for Cj was chosen from the set {.001, .005, .01, 0.05,
.1, .5, 1, 5, 10, 50, 100}. The fj

c and Cj combination which
yielded the minimum value of the averaged E (averaged over all
utterances of the dev set) are selected separately for each subject.
These best choices of f j

c and Cj are used to perform inversion
on the test set using modified GSC. The E and ρ are computed
between the actual trajectories and the estimated trajectories for
every utterance in the test set. The mean E and ρ (averaged over
all utterances in the test set) along with the standard deviation
(SD) are shown in Fig. 2 for both the female and male subjects.
For comparison, Fig. 2 also shows E and ρ when GSC is directly
used in the articulator position variable domain [2].

From Fig. 2, it is clear that for most of the cases, the accu-
racy of estimates is similar or higher (i.e., lower E or higher ρ)
when inter-articulator correlation is utilized using transformation
of variables, but there are cases when GSC on transformed do-
main either increases the mean E or decreases the mean ρ (e.g.
ul x, ll x, ul y for male subject and tt x for female subject). How-
ever, considering the SD of E and ρ, the changes in the accuracy in
terms of E and ρ are insignificant. Thus the gain in performance
because of explicitly using inter-articulator correlation by trans-
formation of variable approach is not significant. This supports
the conclusions based on the theoretical analysis (Sec. 4) that
the correlation among articulators are approximately preserved in
GSC and, hence, there is no further benefit by imposing inter-
articulator correlation explicitly.

6. Conclusions
The analysis of inter-articulator correlation in this paper reveals
that acoustic-to-articulatory inversion using GSC approximately
preserves inter-articulator correlations although articulatory in-
version in GSC is performed for each articulatory trajectory sep-
arately. Using both theoretical and experimental analysis, we ob-
serve that the smoothness constraints for different articulators are
similar and this could be the reason for GSC to approximately
preserve correlation in articulatory inversion in practice.
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