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ABSTRACT

In speech production research, the integration of artionja
data derived from multiple measurement modalities can igeov
rich description of vocal tract dynamics by overcoming timeited
spatio-temporal representations offered by individualdadities.
This paper presents a spatial and temporal alignment mdiked
tween two promising modalities using a corpus of TIMIT sents
obtained from the same speaker: flesh point tracking fronstEe
magnetic Articulography (EMA) that offers high temporasoéution
but sparse spatial information and real time Magnetic Rasca
Imaging (MRI) that offers good spatial details but at lowemporal
rates. Spatial alignment is done by using palate trackirighdd, but
distortion in MRI audio and articulatory data variabilityake tem-
poral alignment challenging. This paper proposes a noighlent
technique using joint acoustic-articulatory featuresclihtombines
dynamic time warping and automatic feature extraction fidiRI
images. Experimental results show that the temporal al@ntrab-
tained using this technique is better (12% relative) thaat tising
acoustic feature only.

of tMRI based on EMA information, tongue reconstructiond aom-
plete tongue movement representation from EMA pelletstpale-
construction from EMA pellets, and their evaluations.

We use a corpus of TIMIT sentences collected from the same
speakers, but at different times, with tMRI and EMA as thei®éor
this study. The speech waveform and corresponding artayldata
(recorded simultaneously) within each dataset is provigesiynchro-
nized by the acquisition system itself (EMA by WAVE) or by dn a
gorithm in the case of rtMRI [2]. However, EMA TIMIT data and
MRI TIMIT data need time warping alignment, because theyewer
recorded separately. The temporal alignment of the twosdtgas
not straightforward due to several reasons. First, thereatfiartic-
ulatory information of the two datasets is different: EMAnim®tion
capture of flesh-point sensors and MRI is image stream. $econ
rtMRI has grainy image noise and suffers from acoustic distioin
the speech audio signal. Lastly, the complex structuretafudators
and their movements in rtMRI images make it hard to directg u
spatio-temporal alignment techniques on the articulatarg.

In order to overcome the limitation of co-registering ratyion
any individual modality, such as using just acoustic featoased

Index Terms— Speech production, spatial alignment, temporaltemporal alignment, we propose a novel temporal alignmsirtgu

alignment, automatic feature extraction, EMA, MRI, TIMI®rpus

1. INTRODUCTION

Speech production research crucially relies on articoyaidata
acquired by various acquisition methods. Each method bkaasdit
vantage in terms of the nature of information it offers, whalt the
same time limited in important ways, notably in terms of that®-
temporal details offered. Popular techniques includeastiund,
X-ray microbeam, Electropalatography, Electromagneti@og-
raphy (EMA) and recently (real-time) magnetic resonancagimg
(MRI). For example, EMA offers motion capture of several liles
point sensors in two (sagittal) or three dimensional (pEyeRRl)
coordinates with high temporal resolution (100 samplesise in
WAVE system), while real-time MRI (rtMRI) provides compéet
midsagittal (or along any arbitrary 2D scan plane) view &f tocal
tract in relatively low temporal resolution (68 68 pixel images
at 23.180 samples/second [1]). Combining the informati@mf
these multimodal sources can be beneficial, but simultanect
quisition with these techniques is usually not possibleabse of
the cognizant technology requirements and limitationsnddealgo-
rithmically co-registering and integrating these datasetthe most
plausible avenue.

This study aims at obtaining the combined benefits of “mlatip
data acquisition methods in modeling speech productioamhjcs by
both spatial alignment and temporal alignment of theseimatial
data. Specifically, it aims to obtain detailed vocal tragtaiyics from
MRI video aligned with EMA sensor trajectories. The aligmnef
multiple data will not only provide us finer and richer artatory in-
formation, but also offer new opportunities for speech pain re-
search and modeling, i.e., temporal reconstruction (igsampling)
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both acoustic and articulatory features, working with dyi@atime
warping (DTW) [3]. The goal of this work is to examine how ar-
ticulatory features can be used to improve temporal aligimEor
instance, spatial alignment of articulatory data can beesbby trans-
formation based on relatively stationary “reference” ciwes such
as using palate tracking of both EMA TIMIT and MRI TIMIT. The
automatic feature extraction technique in the novel tempalign-
ment formulation determines the set of pixels whose meagl pix
tensity behaves similar to each EMA sensor trajectory.Waaie
strate the performance of this alignment method on a suliséeo
TIMIT corpus [1] elicited from a female speaker of American-E
glish.

This paper is organized as following. Section 2 explaing ¢ihe-
tion of our new algorithm to prior work. Section 3 describema-
timodal speech production database, the USC EMA TIMIT and MR
TIMIT corpora, along with the details of post-processingrthafter
acquisition. Section 4 describes our spatial alignmentotand
results. Next, section 5 explains our temporal alignmerthotfol-
lowed by its results in section 6. Finally, discussions,atasions and
future works follow in sections 7 and 8.

2. RELATION TO PRIOR WORK

There have been spatio-temporal alignment studies in warin-
mains including multimedia, medical imaging [4, 5, 6]. Altigh
these methods have shown successful alignment results edn th
dataset of interest, they are not directly applicable toroultimodal
data. This is mainly due to the different spatio-temporalireof the
multimodal data streams. Recently, canonical time warpGigw)

[7] was introduced for alignment task, which deals with eliént
nature of data by alternating between the linear transftbomaof

two original data spaces to a common latent space and tempora



alignment. However, CTW based alignment is likely to failemtthe
two original feature streams have complex (nonlinear)tiaiahips
such as exhibited by the EMA sensor trajectories and MRI amag

mm, and the pixel size of MRI image is 2.9 mm). Then, after na@nu
initialization, we perform a grid search over a variety @frslations,
0, andd, (along x and y axis), from -5 to +5 pixels at increments

streams. In fact we have found poor performance of CTW basedf 0.5 and rotationg from -x/4 to 7/4 radians at increments @732

alignment on our corpus (see section 7 for details).

radians. The manual initialization is done at (horizontaép= 25th,

Accurate information about the shape of the palate can be obertical pixel = 23th, rotation = 0). The optimum translatiand ro-

tained by explicit measurements of the palate (i.e., tat@mn & dental
cast), although in practice this can be labor intensive arudbmnfort-

able for subjects. Previous work has tried to measure palspe
from flesh-point tracking data by asking subjects to sweepdhgue
tip sensor across the palate, but this can be unreliablaubecsub-
jects have trouble keeping the tongue tip sensor directiynag the

palate and precisely in the midsagittal plane [8]. Palaég@sttan also
be inferred from flesh-point tracking data, using all thesserposi-

tions observed from an entire acquisition, for instancedkyng the

convex hull of those sensor positions [9]. In the currentigtpalate

shape is inferred from all tongue sensor positions in tha daing a
windowed technique which allows for more detail about matitape
to be preserved in the inference.

3. DATA

We have developed the technology for rtMRI of the vocal tcartng
speech with simultaneous recording of speech audio [1]ndJsiis
we have created a speech production corpus using the saméiiOC
TIMIT stimuli of 460 English sentences [10], called MRI TIWI
[1], information available in http://sail.usc.edu/spantimit/. The
frame rate of MRI images is 23.180 frames/sec, and spasaluton

is 68 x 68 pixels (2.9 mmx 2.9 mm). More details of the database,
data collection and post-processing, including noise elaton on
speech audio, are explained in [1, 2]. Figure 1(a) shows pleaRI
video frame along with top 3% high variance pixels. With theng
stimuli and subjects of MRI TIMIT we also collected, at a dint
time, flesh-point tracking EMA data using WAVE system (refer
to as EMA TIMIT), which includes the trajectories of 6 flesbiut
sensors on tongue tip (TT), tongue blade (TB), tongue dor ),
upper lip (UL), lower lip (LL) and lower incisor (L), at a sasting
rate of 100 Hz and simultaneously recorded speech auditmvwing
the procedure outlined in [11], we performed post-processihich
includes smoothing and occlusal plane correction on EM/AGEn
The x,y co-ordinate trajectories of six EMA sensors (i. ,EIMA
trajectories) are used for our experiments. EMA TIMIT alsatains
palate tracking. In palate tracking, a subject scans themugprface
of the vocal tract from the alveolar ridge to the soft palatgng the
TT sensor. This palate tracking along with MRI image is usedpa-
tial alignment. For analyzing the performance of tempolighanent,
we use identical set of 20 sentenceg!lQ sec) from the MRI TIMIT
and EMA TIMIT such that they cover all phonemes. The sentence
were spoken by a native female speaker of American English.

4. SPATIAL ALIGNMENT OF EMA SENSORS ON MRI
IMAGE

The goal of spatial alignment is to align the reference ngdta
plane (i.e., x-y plane) in EMA recording with MRI scan planeks
that EMA sensor coordinates on the midsagittal plane cpores to
the respective points on the MRI image. The spatial aligrinen
achieved by estimating the transformation of EMA sensorghen

tation is found to bed&; = 25.5,6; = 24,60* = -n/32). §;, J,,, andg*

are found by maximizing the contrast across palate tracellasvs:

>

Vi,jEpalate trace

Pij—1

{65,0,,0"} = arg max p—

x50y,
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wherep; ; is a pixel at ¢, j) of standard deviation (SD) MRI matrix.
The SD MRI matrix contains the standard deviations of MRIgma
pixels. In SD MRI matrix the palate is clearly visible as aioggof
high contrast just above the oral cavity and it also guar@dsnagthe
false palate problem unlike the raw MRI image matrix. Dueh®e t
unavailability of ground truth we visually examine the sabalign-
ment result. Figure 1(b) shows the optimum palate tracetitmta

of EMA on MRI image. Visually it appears that the transforioat

of EMA results in a good match between EMA palate trace and the
palate visible in MRI image.
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(a) High variance MRI pixels (b) Aligned palate trace

Fig. 1. (a) Top 3% highest variance pixels are highlighted (along
with their bounding box), which includes articulatory mawents in
vocal tract region. (b) Spatial alignment result - dark Hioe is the
estimated palate trace on MRI image.

5. TEMPORAL ALIGNMENT USING ACOUSTIC AND
ARTICULATORY FEATURES

Below we describe our proposed automatic algorithm for tnalp
alignment of MRI and EMA recordings using both acoustic and a
ticulatory features. We refer to this automatic algorithen Jmint
Acoustic-Articulatory based Temporal Alignment (JAATA). key
feature of JAATA is that it computes EMA-like features fromar
MRI video in order to achieve optimum alignment.

5.1. Objective function

Suppose we need to perform temporal alignment of MRl and EMA
recording of F' sentences. Suppose tifeth 1 < f < F) sen-
tence hagVy, and Ng frames in MRI and EMA recordings, respec-
tively. LetXarr = [X1,m -+ Xn,,,m] denote the acoustic feature
sequence matrix of MRI audio of thgth sentence wherg; s is

the acoustic feature vector at th¢h frame. Similarly, letXz s =
X1, *-- Xng,r] denote the acoustic feature sequence matrix of
EMA audio. We vectorize MRI video in each frame, i.e.,l&h
frame MRI video matrixV; s (68x68) is converted to MRI video

MRI image. We uses MRI image and palate tracking of EMA sen-Vectory; ,, (68%x1) such thaty, ,,(68j + i) = Via(i,j), 0 <

sors for this task. The spatial alignment of articulatorgsses on
MRI image can be done by applying the same transformatiomen t
sensor coordinates. We estimate the palate contour from pifidte
tracking data as well as all tongue sensor data by choosigiginest
vertical point in each adjacent bins (L/20 mm in length, nertap),
where L is the length of the palate tracking data, along x.aXis
find a location for the palate trace in the MRI image plane, n&lyi
scaled down EMA sensors by 2.9 (Note that unit of EMA sensors i

1,7 < 67. Thus, for thef-th sentence, we obtain the MRI video
sequence matriX nrs = [y, -+ Y, ] The 12 EMA sen-

sor trajectory matrix is denoted By ; = [yLE

T
Z%A’f . z%?f} , wherey, ; (12x1) represents the 12 EMA sen-

sor values at théth frame andzf, . (Ve x1) is the trajectory of the
g-th EMA sensor forf-th sentence. T is the matrix transpose opera-
tor. We obtain the best temporal alignment between MRI andAEM

: yNE,E} =



recordings of allF’ sentences by minimizing the following objective
function:
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The objective function/ is obtained by summing objective func-
tions J; corresponding to each sentencé; has two terms which
are convexly combined using weight- the first term measures the
Euclidean distance between acoustic features of MRl and BEMA
dio after alignment and the second term measures the sanae-for

ticulatory features.||U||% = Tr(UTU) designates the Frobenious
norm. Wy, r, Wg s encode the time alignment path férth sen-
tence (for details see [7],, 1 (68” x1) is a masking matrix, whose
non-zero elements selects a submatrix (of dizex L, K, L € Z)
from the MRI image matrix. Thus%s;r,MYM,f is the articulatory
trajectory derived from MRI video corresponding ge¢h EMA tra-
jectory. The number of pixels or the area of the submatrieisaded
by A(= K L), which is user-specified before optimiziog The ele-
ments ofs,, »; can take value of 0 or 1. ThusIMl = A, wherelis

a column vector of all ‘1’s.

5.2. Optimization of the objective function

for each sentence. We have found that derivative computail
normalization contribute to better temporal alignmenf@enance.

As discussed in Section 5, for each EMA trajectory, the optim
rectangular region on the MRI image is estimated as a byvutod
of the temporal alignment formulation. Trajectory of theidative
of the mean pixel intensity of MRI in the optimized area isdifer
temporal alignment. To reduce the search space for findiadoth
cation of the optimum rectangular area, we restrict thecbetr a
bounding box of the top 3% high variance pixels (see Figusg)1(
which contains the surface movement of articulators. Xhalues
used for optimization aré(k — 1) x 0.05,1 < k < 20}.

For evaluation of the temporal alignment, we have used an ob-
jective measure of how the phonetic boundaries of MRI audie ¢
respond to those of the EMA audio when mapped using the opti-
mized alignment path. We call this measure as Average Pieonet
boundary Distance (APD). Phonetic boundaries obtained fovced
alignment [13] are manually corrected to be used in thisuatain.
APD is computed as the root mean square (RMS) value of the dif-
ference between the manually corrected phonetic boursdanie the
estimated phonetic boundaries in EMA audio obtained by rimapp
phonetic boundaries of MRI audio using the temporal aligmme

6.2. Results

We experimented with different values of rectangular atez9, 12,
15, 18, 21, 24, 30, 32, 36. For all these different choicesgl pthe
optimum value of\ turns out to be 0.1. For different choices 4f
APD averaged over all sentences reduces-Bymsec when articula-
tory features are used in addition to MFCC by JAATA. The minim
APD, 44.198 msec occurs with=21 compared to an APD of 50.101
msec using only MFCCs. To have deeper insights, we, thergifor
vestigate the quality of alignment for each sentence witi21.
We firstly examine the optimum rectangular region on MRI im-

Minimization of J is a non-convex optimization problem with respect age for each EMA trajectory. Figure 2 shows the estimateidnegf

to the optimization variable® s, s, Wg,; (time alignment matri-

MRI image with A = 21 for four different EMA trajectories, namely

ces),{s,.m,1 < ¢ < 12} and\. Hence we use an iterative approach LIX, Lly, TTy, TBy. From Figure 2 it is clear that the regionsre

comprising two main steps - 1) Optimi¥& s, s, Wg, s using DTW
given{s,,m,1 < ¢ < 12} and), 2) GivenW,r, Wg,p Vf and),
optimize {s;,» } sequentiallyvq by searching ovek, L such that

respond to the respective articulators on the MRI image. mban
pixel intensity indicates the constriction degree in thgioe of se-
lected pixels. Constriction degree measurement of a speafial

KL = A. )is optimized by performing a grid search. It is easy tract region of rtMRI data has been used in earlier speeatiLiton

to show (from (2)) that in each of these stepslecreases mono-
tonically. Thus the iterative process of optimization steghen the

studies i.e., [14, 15]. However, finding the “best” regiomrespond-
ing to each EMA trajectory by hand is not straightforward rniag

value of J reaches a local minima. The iterative process is initial-morphological structure of subjects sometimes makes d tade-

ized with the temporal alignment obtained by acoustic-datures
using DTW and Euclidean distance between acoustic feaasrése
distance measure.

6. TEMPORAL ALIGNMENT EXPERIMENTS

6.1. Experimental setup

We use 13 dimensional mel-frequency cepstrum coefficie Q)
vector as the acoustic featuXe, andX g for both MRI TIMIT and

cide the best region. Thus our proposed optimization forptaal
alignment offers a solution in this regard. To examine howealated
the mean pixel trajectory is with the corresponding EMAdcapry,
we also report correlation coefficient)(between the two,, when
averaged over all articulators, is 0.59 with a SD of 0.A®alues for
different articulators ranges from 0.36 (ULy) to 0.68 (LIx)values
suggest that, on an average, the features from the measiigtener
optimum MRI regions are linearly correlated to the respecEMA
trajectories.
Figure 3 shows example alignment maps for four different sen

EMA TIMIT audio. MFCCs are computed at a frame rate of 100 Hz, [€NCes obtained using only MFCC and with both MFCC and dticu

Note that 12 EMA trajectories are also at a frame rate of 100 Hz

We applied smoothing on the EMA trajectories by butterwdilter

with a cut-off frequency at 8 Hz. 8 Hz is chosen by the freqyenc

analysis in a previous work in [12]. We have computed thevdévie
of EMA trajectories and denote them ¥s;. Similar to the EMA
trajectories, we also low-pass filtered MRI video pixel écipries
using a butterworth filter with a cut-off frequency at 8 Hzn& MRI

videos have a lower frame rate, we have upsampled the MRbvide

at a sampling rate of 100Hz such that both acoustic and &tay
data streams are at identical frame rate. This frame ratech@sen
to match the frame resolution of the phone boundary, whialséx
for evaluation of temporal alignment. Derivatives of thesaimpled
MRI pixel trajectories are computed and use&as. We normalized
both EMA and MRI articulatory feature trajectories betw@esnd 1

tory features (MFCC+Artic) using JAATA. As a reference aligent,

we have also shown an alignment based on phonetic boun{Beés
erence). These four cases are chosen to illustrate thensestehere
use of articulatory features led to better as well as worggmlent
compared to only MFCC based alignment. For example, APD de-
creases by 134 msec for sentence 19 (Figure 3(b)) and by 3@ mse
for sentence 3 (Figure 3(b)) by using automatically ex&dartic-
ulatory features in addition to MFCC. However for sentengevie
observed that APD increases by 52 msec (Figure 3(d)).

7. DISCUSSIONS

This study includes two alignment tasks, spatial alignnaet tem-
poral alignment. The performance of our temporal alignnteal-



(a) for LIx (p=0.68) (b) for LLy (p=0.67)

(c) for TTy (p=0.65) (d) for TBy (p=0.64)
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Fig. 3. Alignment maps of 4 example sentences with acoustic only

Fig. 2. Four examples of optimum MRI regions whose mean pixel(MFCC) and acoustic-articulatory features (MFCC+ArtidRefer-

intensities show highest correlation with correspondiagssr tra-
jectories. Automatically selected pixel region is markgdabblue
square box on each MRI image. ‘x’ or 'y’ after sensor name, Lk

indicates the direction of sensor movement (in the x or y)axis

nigue does not rely much on spatial alignment. JAATA formula
tion does not use spatial alignment information directlyei if we
transform EMA sensor coordinates by spatial alignmentieefising
them in JAATA, the temporal alignment performance may naingfe
much. This is because the optimum spatial alignment pasmnoét

ence is for manually corrected phoneme boundary (baseliapand
(b) are when JAATA performs better than only MFCC, (c) is when
benefits from JAATA is minimal, and (d) is when JAATA performs

worse than only MFCC.

DTW with MFCC. The mean APD of DTW with MFCC is 50.101
msec &40.659 msec). With MFCC based initialization, the APD
of CTW with only articulatory data is 60.731 mset39.427 msec).

It indicates that CTW with articulatory data does not immgrdem-
poral alignment on top of MFCC based initialization. Whentbo

rotation ¢*) is small. However, the detailed information offered by MFCC and articulatory data are used in CTW, the mean APD be-

spatial alignment, i.e., precise geometric relation betwiEMA sen-
sor trajectories and the whole vocal tract in MRI could bedbieral
for other speech production research problems.

comes 50.229 msed-40.617 msec). This result is worse than that of
JAATA - 44,198 msec+£19.949 msec) - which uses MFCC and au-
tomatically extracted articulatory features. This parfance benefit

Figure 3 shows that the temporal alignment of JAATA while Suggests that the proposed JAATA formulation results itebéem-

promising, still has alignment error. Also, the temporaaient of
MRI and EMA recording using joint acoustic articulatory fiel®s

poral alignment performance. Additional benefit of JAATAt&at
it provides “interpretable” EMA-like articulatory feates from MRI

improves APD for some sentences but decreases for others Trvideo.

could be due to the temporal sparseness of articulatorynvde
tion in rtMRI data. The frame resolution of rtMRI image is aibo
43 msec/frame, and the APD of temporal alignment using dimous
features is 50 msec. Therefore, the information gain forptal
alignment by incorporating articulatory features on topaobustic
feature might be limited. Error in manual phone boundaryemr
tion could be another possible reason for the limited perforce of
JAATA.

8. CONCLUSIONS AND FUTURE WORKS

The goal of this study is to obtain spatial and temporal atignts

of multimodal speech production data, specifically MRI ahdiAsin
order to gain the advantages of both types. For spatial rakgu,

we aligned the coordinates of EMA data to MRI images success-
fully by a grid search of estimated EMA palate tracking. Femi

We have also investigated the benefit of using a subset of EMAoral alignment, we propose a novel algorithm, called JAATAich

sensors in temporal alignment using forward sensor selectp-
proach. This was done by varying(in eqn. (2)) over a subset of
sensor indices instead of all 12 EMA trajectories. The APRieva
was used to select the best EMA sensor trajectory in eactigarof
forward selection approach. The lowest value of APD (441186c)
was achieved withA=30 and ULx, ULy, LLx, Lly, TDy trajecto-
ries. Thus, there was no significant benefit in APD by using/éod
sensor selection compared to using all sensor trajectories

Finally, we tested the spatio-temporal alignment perforoeaus-
ing CTW [7] on our corpus. ldentical to JAATA evaluation, CTW
performance is also measured by APD for each sentence.ukstic
tory features used in CTW are the direct 12 EMA sensor trajext
and the MRI image pixels (in the blue bounding box in Figura)1(
for feature reduction without loosing surface movementartitula-
tors in the vocal tract). The mea#§D) APD across all 20 sentences
of CTW is 93.143 msecH 56.026 msec), when CTW is initialized
with uniform time warping [16] (the default initializatiomethod of
CTW). For fair comparison with JAATA, we also initialized @Thy

combines DTW-based temporal alignment with optimum alditcury
feature extraction from MRI video. This technique also gates the
best MRI image regions from which the EMA-like articulatdea-
tures are extracted for optimum alignment. We observed éme-b
fits of using this technique experimentally using data froRINMnd
EMA articulatory corpora of English TIMIT sentences spoksrthe
same talker. Experiment on 20 sentences’ data shows thatAlfA
duces mean APD value from 50.101 msec (acoustic only aligime
to 44.198 msec, which is 12% improvement. Although resuks a
reported on 20 sentences, the alignment algorithm dewelopthis
work can be readily applied on all the sentences from MRI TIMI
and EMA TIMIT corpora.

The temporal alignment of EMA TIMIT and MRI TIMIT still
has room for improvement. For example, more flexible spetifios
(size, shape, numbers) of automatic pixel region selectiigt gen-
erate articulatory features leading to better alignmehesg are part
of our planned future work.
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