
Enhancing Audio Source Separability Using Spectro-Temporal Regularization
with NMF

Colin Vaz1, Dimitrios Dimitriadis2, and Shrikanth Narayanan1

1Ming Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089

2AT&T Labs–Research
Bedminster, NJ 07932

cvaz@usc.edu, ddim@research.att.com, shri@sipi.usc.edu

Abstract
We propose a spectro-temporal regularization approach for
NMF that accounts for a source’s spectral variability over time.
The regularization terms allow NMF to adapt the spectral ba-
sis matrices optimally to reduce mismatch between the spectral
characteristics of sources observed during training and encoun-
tered during separation. We first tested our algorithm on a sim-
ulated source separation task. Preliminary results show signifi-
cant improvement of SAR, SDR, and SIR values over some cur-
rent NMF methods. We also tested our algorithm on a speech
enhancement task and were able to show a modest improvement
of the PESQ scores of the recovered speech.
Index Terms: dictionary learning, NMF, speech enhancement,
source separation.

1. Introduction
The goal of source separation algorithms is to extract individ-
ual audio components from a mixture of signals. For example,
source separation can be used to separate a mixture of a speaker
and background traffic audio into speaker-only and traffic-only
sounds. It is used in a wide variety of tasks, such as speech
enhancement [1, 2] and automatic music transcription [3], im-
proving the overall performance.

One popular method for source separation is non-negative
matrix factorization (NMF). First proposed by Paatero and Tap-
per [4, 5] and further developed by Lee and Seung [6], NMF
takes a non-negative matrix representation of the mixture signal
and factors it into basis and time activation matrices by mini-
mizing a cost function. Convolutive NMF was proposed in [7]
to represent spectral variability of a source over time by using
multiple basis matrices. Sparsity constraints in the NMF for-
mulation have been shown to reduce the chance of having more
than one activation pattern being activated at the same time
[8, 9]. Researchers have also developed different cost functions
to tailor NMF to specific problems. For example, Cichocki et
al. proposed cost functions based on Csiszár’s ϕ-divergence to
increase robustness to noise [10], and Guillamet et al. incor-
porated a diagonal weight matrix in the cost function to reduce
redundancy in the basis matrix [11].

Source separation with NMF can also be improved by
adding regularization terms to the cost function. Févotte et al.
implemented temporal smoothing by using a Markov chain reg-
ularization term that enforces smoothness over the rows of the
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time-activation matrix [12]. Recently, Wilson et al. proposed
temporal regularization for separating audio sources by incor-
porating temporal statistics of the sources in the regularization
term [13]. This is useful for separating, for example, sources
corresponding to fast and slow talkers, which have similar spec-
tral characteristics but different temporal characteristics. Their
approach, however, assumes that the basis matrices stay fixed,
which degrades separability when the spectral characteristics
evolve over time and no longer match the trained basis matrices.
We propose a reformulation of their algorithm that accounts for
spectral variability over time. This allows us to adapt our basis
matrices to changing conditions in the sources.

The paper is organized as follows. Section 2 describes the
formulation of the spectro-temporal regularization. We test our
algorithm on a simulated example source separation task and a
real speech enhancement task and report the results in Section 3.
In Section 4, we analyze these results and discuss areas in which
we can improve our algorithm. Finally, we state our conclusions
and future work in Section 5.

2. Algorithm
NMF takes a M × N non-negative representation V of the
source and factors it into a M ×K basis matrix W and K ×N
time-activation matrix H such that V ≈ WH . The product
WH has rank at most K. Typically, K is chosen such that
K < min(M,N), giving a lower-rank approximation of V .
The non-negative representation for audio signals is usually the
magnitude spectrogram and the basis matrix contains the spec-
tral characteristics of the source. NMF performs the decom-
position by minimizing a cost function, which is usually a dis-
tance metric between V and WH , such as the Frobenius norm,
KL divergence, or Itakura-Saito divergence. We add a spectro-
temporal regularization term to the NMF cost function, in a
similar manner to Wilson et al. [13]. The regularization term
constrains the updates of the basis matrix and time-activation
matrices to better match the spectro-temporal characteristics of
the source.

The proposed source separation algorithm consists of two
stages: training and separation. In the training stage, we as-
sume we have access to the J source signals in the mixture. We
take the M × N magnitude spectrogram Vi of the ith source
(i ∈ {1, . . . , J}) and use standard NMF to learn a M × K
basis matrix Wi and K × N time-activation matrix Hi. We
replicate theWi matrixN times and stack it into aM×K×N
tensor Wi,rep. Similarly, we replicate the Hi matrix M times
and stack it into a M ×K × N tensor Hi,rep. We then do an



element-wise multiplication of Wi,rep and Hi,rep to produce a
new tensor Ai. Figure 1 illustrates this procedure. Ai captures
the value of each element in the basis as a function of time for
source i.

Figure 1: Diagram illustrating the calculation of tensor A. In
this example, M = 4, K = 3, and N = 5. ⊗ denotes element-
wise multiplication.

We assume that the elements in the basis matrix Wi and
time-activation matrix Hi were drawn from a log-normal dis-
tribution and are independent of each other. The log-normal
distribution is constrained to non-negative values, and the log
of the distribution is a normal distribution, which is fully char-
acterized by the mean vector and covariance matrix. Hence, we
can characterize the statistics of Wi and Hi by calculating the
means and covariances of log(Wi) and log(Hi). Furthermore,
the multiplication of two independent log-normal random vari-
ables is also a log-normal random variable. Thus, the tensor Ai

also has a log-normal distribution, which can be fully described
by the mean and covariance of log(Ai).

We now learn spectro-temporal statistics about the ith
source from Ai. We characterize the time variation of each
frequency bin by calculating the K × 1 mean vector µi(m)
and K × K covariance matrix Σi(m) of log(Ai(m, :, :)), for
m ∈ [1,M ]. This gives us the mean activation of each element
in the basis in themth frequency bin and the covariance of those
elements for each frequency bin. These statistics characterize
the activation of each element in the basis. Hence, we will use
these statistics to regularize the update equations for the basis
and time activation matrices of the mixture signal. We note that
we constructed Ai from the ground-truth source, so our exper-
iments used supervised source separation. It is possible to use
an unsupervised or semi-supervised approach, such as Proba-
bilistic Latent Component Analysis (PLCA) [14], to construct
Ai.

After the training stage, we run the separation stage. We
obtain the spectrogram of the mixture V and calculate the best
W and H that approximates this spectrogram while taking into
consideration the spectro-temporal statistics of the sources. The
proposed NMF algorithm includes an additional penalty term in
its cost function to regularize the NMF updates. The cost func-
tion minimizes the KL divergence between the element in the
mth row and nth column of V and the corresponding element
in WH:

C(V,W,H) =

M∑
m=1

N∑
n=1

[V (m,n) log
V (m,n)

W (m, :)H(:, n)
+

V (m,n)−W (m, :)H(:, n)]− αL(A)

(1)

where

L(A) = −1

2

M∑
m=1

N∑
n=1

{[logA(m, :, n)− µ(m)]T Σ−1(m)

[logA(m, :, n)− µ(m)]− log((2π)K |Σ(m)|)}

= −1

2

M∑
m=1

N∑
n=1

{[logW (m, :) + logH(:, n)− µ(m)]T Σ−1(m)

(logW (m, :) + logH(:, n)− µ(m)]− log((2π)K |Σ(m)|)}
(2)

whereA(m, :, n) = W (m, :)⊗H(:, n),⊗means element-wise
multiplication, µ(m) = [µT

1 (m) µT
2 (m) · · ·µT

J (m)]T , and
Σ(m) = blockdiagonal(Σ1(m),Σ2(m), . . . ,ΣJ(m)). L(A)
regularizes each frequency bin in the basis based on the statis-
tics of the time-activation of that frequency bin. Following the
method in [15], the multiplicative update rules forW andH are

W ←W ⊗
V

WH
HT

[1HT + αφ(A)]ε

H ← H ⊗
WT V

WH

[WT1 + αϕ(A)]ε

(3)

where 1 denotes a matrix of ones, [·]ε indicates that values less
than a small positive constant ε should be replaced by ε to pre-
serve non-negativity, and

φ(A) =
∂L(A)

∂W (a, b)

=

N∑
n=1

[Σ−1(a)(logW (a, :) + logH(:, n)− µ(a))]b
W (a, b)

ϕ(A) =
∂L(A)

∂H(a, b)

=

M∑
m=1

[Σ−1(m)(logW (m, :) + logH(:, b)− µ(m))]a
H(a, b)

In these equations, ⊗ means element-wise multiplication, di-
vision is element-wise, and [v]a means the ath component of
vector v. W is initialized with [W1 W2 · · ·WJ ] and H is ini-
tialized with a random matrix. To reconstruct the spectrogram
for source i, we compute V̂i = V ⊗ ŴiĤi

WH
, where Ŵi refers to

the columns ofW and Ĥi refers to the rows ofH corresponding
to source i.

3. Experiments
3.1. Setup

We ran a simulated source separation experiment and a speech
enhancement experiment using our proposed algorithm, the al-
gorithm presented in [13] (we will refer to this as Wilson’s algo-
rithm), and a standard NMF implementation that minimized the
KL divergence. We used the standard NMF to learn the basis
matrices for the sources during training. For the ith source sig-
nal, we computed its magnitude spectrogram Vi using a 20 ms
Hamming window with a 10 ms shift. We initialized the ba-
sis matrix Wi with randomly-chosen columns of Vi. The NMF
algorithm decomposed the spectrogram for each source into ba-
sis and time-activation matrices, yielding Wi and Hi. During
the source separation stage, we computed the magnitude spec-
trogram for the mixture signal and initialized the basis with



W = [W1 W2 · · ·WJ ] for J sources in the mixture. We then
used a sliding window on the spectrogram of 64 frames long,
shifted every 32 frames, as input to the three NMF algorithms.
We initialized the time-activation matrix H with a random ma-
trix from the standard uniform distribution. For consistency, we
used this same initial W and H for all three NMF algorithms.
Additionally, we set the maximum number of update iterations
to 100 for all the algorithms.

To optimize α, we mixed together chirp and sawtooth sig-
nals, which were used for the source separation experiment, and
separated the mixture signal using our proposed algorithm. We
calculated the SAR, SDR, and SIR of the separated sources us-
ing the BSSEval Toolbox [16]. We found the optimum α by
doing a grid search from 0 to 1 with a step size of 0.1 and find-
ing the α that maximized the SAR, SDR, and SIR values. Of-
tentimes, a certain parameter combination did not maximize all
three measures simultaneously. So, we maximized the value
of ¯sar + ¯sdr + s̄ir, where (̄·) indicates the value is normal-
ized to between 0 and 1 relative to values we observed during
the grid search. For this particular mixture of chirp and saw-
tooth signals, we found the optimum α to be 0.2. We held these
values fixed for all of our experiments. However, for optimum
source separation performance, α should be tuned to the partic-
ular mixture signal that is being separated.

3.2. Separation Experiment
To test the performance of our algorithm, we ran a source sep-
aration task. We created a chirp signal with frequencies that
swept from 880 Hz to 3520 Hz and a sawtooth wave at a con-
stant 2000 Hz. The signals were 8 seconds long and had a sam-
pling rate of 16 kHz. Figures 2a and 2b show the spectrograms
of these signals. We trained a 1-component basis for the chirp
and sawtooth signals and computed the statistics for Wilson’s
algorithm and our proposed algorithm. We added these signals
together at 0 dB SNR to create the mixture signal. We passed
the mixture signal through our proposed algorithm, Wilson’s al-
gorithm, and standard NMF to perform source separation. Fig-
ures 2c–2h show the spectrograms of the recovered signals. We
ran this experiment 50 times, each time calculating the SAR,
SDR, and SIR of the recovered signals. Figures 3a and 3b show
the mean of these values for the recovered chirp and sawtooth
signals.

3.3. Speech Enhancement Experiment
We also tested our algorithm on a speech enhancement task,
where we separate speech from background noise. We took
48 sentences from the Wall Street Journal database, learned
20-component basis matrices, and computed spectro-temporal
statistics for those sentences. We then took white noise, pink
noise, F16 noise, and speech babble from the NOISEX database
[17]. For each noise, we learned 20-component basis matri-
ces, calculated spectro-temporal statistics, and added them to
the speech at 0 dB SNR. We ran our proposed algorithm to sep-
arate the noisy signal into the speech and noise sources. We
calculated the PESQ score, a quantitative measure of the per-
ceptual quality of speech, of the recovered speech signal [18].
Again, we compared our performance to the standard NMF and
Wilson’s algorithm. Figure 4 shows the PESQ scores for this
experiment in the different noise conditions.

One advantage our algorithm has over Wilson’s algorithm
is the ability to update the basis matrix at each iteration. This
means that the basis can change to compensate for any spec-
tral mismatch of the source between the training and separation
stages. The regularization terms in our algorithm help the basis

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Spectrograms for (a) chirp, (b) sawtooth, (c) chirp re-
covered by standard NMF, (d) sawtooth recovered by standard
NMF, (e) chirp recovered by Wilson’s algorithm, (f) sawtooth
recovered by Wilson’s algorithm, (g) chirp recovered by pro-
posed algorithm, and (h) sawtooth recovered by proposed algo-
rithm.

matrix to update based on the spectro-temporal statistics of the
source. To test this, we ran another speech enhancement task,
this time training the speech source on male speakers but do-
ing separation of noisy female speech. The spectral mismatch
between male and female speakers would require the basis to
adapt during separation to better match the female speaker. Fig-
ure 5 shows the PESQ scores of this experiment.

4. Discussion
We used the Wilcoxon rank-sum statistical test, a non-
parametric version of the Student’s T-test, to determine the sta-
tistical significance of the results. For the source separation
experiment, we determined that the improvement of the SAR,
SDR, and SIR results for the chirp over the other two NMF
methods was statistically significant at the 95% level. This im-
provement can be attributed to the basis update and the spectro-
temporal statistics for the chirp. The chirp’s frequency varied
with time, so it required the basis, which had only one com-
ponent, to change over time. The spectro-temporal statistics
guided the basis update as the chirp’s frequency changed. Thus,
it can be seen in Figure 2 that our proposed algorithm recov-
ers the chirp better than the other methods. Similar results hold
for the sawtooth signal, though the differences in performance
between the algorithms are much less than the results for chirp
(our algorithm is only significantly better for SDR at the 95%
level). Sawtooth has a constant frequency over time, so in this
case, there is no particular advantage of our algorithm over the



(a)

(b)

Figure 3: Mean SAR, SDR, and SIR values for (a) chirp and (b)
sawtooth.

Figure 4: PESQ scores for the speech recovered by standard
NMF, Wilson’s algorithm, and proposed algorithm in different
noises matched training data.

others.
For the speech enhancement experiment, our proposed al-

gorithm performs significantly better than Wilson’s algorithm
at the 95% level in F16 and speech babble noises. The perfor-
mance for all three algorithms are similar for white and pink
noise. Because these are stationary noises, they do not have
much temporal variability in their spectra. Hence, there is not
much gained by using spectro-temporal regularization, as in the
case of the sawtooth signal. The results are similar for the mis-
matched speech enhancement experiment, with the proposed
algorithm performing better than the others in non-stationary
noise. It appears, though, that all of the algorithms perform
similarly well in the mismatched case, contrary to our hypoth-
esis that a spectral mismatch would degrade the performance
of standard NMF and Wilson’s algorithm. To investigate this,
we observed the basis matrices of the male-spoken sentences
and female-spoken sentences and found many similar basis vec-
tors between the male sentences and female sentences. Hence,

Figure 5: PESQ scores for the speech recovered by standard
NMF, Wilson’s algorithm, and proposed algorithm in different
noises with mismatched training data.

there isn’t an overwhelming spectral mismatch to affect the per-
formance of the algorithms. Surprisingly, standard NMF per-
formed very well in the speech enhancement experiments. To
investigate this, we computed the SAR, SDR, and SIR values of
the recovered speech. We found that the recovered speech from
standard NMF had a very high SIR and low SAR and SDR. This
means that standard NMF separated the speech and noise rather
well but at the expense of introducing distortions and artifacts
into the recovered signal. On the other hand, Wilson’s algo-
rithm and our algorithm had more balanced SAR, SDR, and
SIR values. This suggests that the regularization term balances
the trade-off between good separation and high distortion.

We note that α was not optimized for the speech enhance-
ment experiments. Different background noises and SNR lev-
els will most likely require different levels of spectro-temporal
regularization. This would be especially true depending on
whether the noise is stationary or not, because this affects how
much the basis and time-activation matrices should change at
each iteration. Thus, we can improve our algorithm by calculat-
ing α based on the statistics of the sources, which would allow
α to account for the spectral, temporal, and energy characteris-
tics of the sources.

5. Conclusion
We have proposed a spectro-temporal regularization for NMF
that uses statistics of the temporal evolution of the sources’
spectra. Unlike some NMF approaches that assume a fixed ba-
sis during separation, our approach allows updating of the basis
to adapt to unseen spectral characteristics in the mixture sig-
nal. Preliminary results from a source separation experiment
and speech enhancement tasks were promising for dealing with
sources with non-stationary spectral characteristics.

We will revise our spectro-temporal regularization terms to
better handle stationary sources and find a way to automatically
calculate the optimum α. Additionally, we will apply our reg-
ularization approach to convolutive NMF because convolutive
NMF is designed to deal with sources that have a time-varying
basis. After implementing these improvements, we will evalu-
ate the algorithm’s performance on more standard source sepa-
ration databases, such as CHiME. We will also work on a com-
putationally efficient implementation of the regularization so
that it can be more useful for practical applications, such as real-
time speech enhancement. More specifically, we will evaluate
ASR performance on noisy speech when using our proposed
algorithm on the front-end of an ASR system.



6. References
[1] T. Virtanen, “Sound source separation using sparse coding

with temporal continuity objective,” in Proc. Int. Computer
Music Conference, 2003, pp. 231–234.

[2] C. Vaz, V. Ramanarayanan, and S. Narayanan, “A two-
step technique for MRI audio enhancement using dictio-
nary learning and wavelet packet analysis”, in Proc. Inter-
Speech, Lyon, France, 2013, pp. 1312–1315.

[3] S. A. Abdallah and M. D. Plumbley, “Polyphonic trascrip-
tion by non-negative sparse coding of power spectra,” in
Proc. 5th Int. Conf. Music Information Retrieval, 2004, pp.
318–325.

[4] P. Paatero and U. Tapper, “Positive matrix factorization: a
non-negative factor model with optimal utilization of error
estimates of data values,” Environmetrics, vol. 5, no. 2, pp.
111–126, 1994.

[5] P. Paatero, “Least squares formulation of robust non-
negative factor analysis,” Chemometrics and Intelligent
Laboratory Systems, vol. 37, no. 1, pp. 23–35, 1997.

[6] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Adv. in Neu. Info. Proc. Sys. 13,
2001, pp. 556–562.

[7] P. Smaragdis, “Non-negative matrix factor deconvolution;
extraction of multiple sound sources from monophonic in-
puts,” in Fifth Int. Conf. Independent Component Analysis,
Granada, Spain, 2004, pp. 494–499.

[8] P. D. O’Grady and B. A. Pearlmutter, “Convolutive non-
negative matrix factorisation with a sparseness constraint,”
in Proc. IEEE Signal Processing Society Machine Learning
for Signal Processing, Arlington, VA, 2006, pp. 427–432.

[9] M. Schmidt and R. Olsson, “Single-channel speech sepa-
ration using sparse non-negative matrix factorization,” in
Proc. InterSpeech, Pittsburgh, PA, 2006.

[10] A. Cichocki, R. Zdunek, and S. Amari, “Csiszár’s diver-
gences for non-negative matrix factorization: family of new
algorithms,” in Proc. Sixth Int. Conf. Independent Compo-
nent Analysis and Blind Signal Separation, Charleston, SC,
2006, pp. 32–39.

[11] D. Guillamet, M. Bressan, and J. Vitrià, “A weighted non-
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