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Abstract

Manual annotation of human behaviors with domain specific

codes is a primary method of research and treatment fidelity

evaluation in psychotherapy. However, manual annotation has

a prohibitively high cost and does not scale to coding large
amounts of psychotherapy session data. In this paper, we

present a case study of modeling therapist language in addiction

counseling, and propose an automatic coding approach. The

task objective is to code therapist utterances with domain spe-
cific codes. We employ Recurrent Neural Networks (RNNs) to

predict these behavioral codes based on session transcripts. Ex-

periments show that RNNs outperform the baseline method us-

ing Maximum Entropy models. The model with bi-directional
Gated Recurrent Units and domain specific word embeddings

achieved the highest overall accuracy. We also briefly discuss

about client code prediction and comparison to previous work.

Index Terms: Recurrent neural network, behavioral coding,
motivational interviewing, language modeling

1. Introduction

Promoting mental healthcare is an important societal need, par-

ticularly for the prevention of drug and alcohol abuse [1]. Psy-
chotherapy research investigates factors that contribute to the

effectiveness of treatment as well as methods of assessing ther-

apist competence. Observational coding of therapist and client

behaviors using domain knowledge inspired coding manuals
has been a standard approach in research [2]. Similar to dia-

log act tagging, psychotherapy coding often focuses on discrete

linguistic behaviors and classifies them in categories of clinical

interest.
In this paper, we take Motivational Interviewing (MI) as an

example, which is a type of psychotherapy treatment [3]. MI

is clinically effective and widely adopted in applications such

as addiction counseling. It emphasizes the intrinsic motivation
of clients to change their addictive behavior [4]. The Motiva-

tional Interviewing Skill Code (MISC) — a widely used coding

manual — classifies each utterance into one of a set of mutually

exclusive and exhaustive codes, such as Facilitate, Simple Re-

flection, Open Question, etc. [5]. The MISC coding system at-

tempts to capture the task relevant aspects of utterances. Statis-

tics of the codes assigned to an MI session are used as mea-

sures of the therapist’s treatment fidelity. Here one session cor-
responds to one appointment of MI treatment or intervention,

conducted in the form of therapist-client conversation.

This work is supported by NSF, NIH and DoD.

Traditionally, human coders manually observe session

recordings and make code assignments. However, the coding

process is costly in both time and human resources [6]. Coder

training and reliability evaluation are additional critical issues

besides the cost of coding. These limitations make large scale
applications of manual coding unrealistic [7]. To address this

difficulty, computational methods of analyzing human behav-

iors have been proposed to complement human experts’ judg-

ments. Multimodal signal processing and machine learning
methods have shown promise in modeling behavioral cues and

their links to expert judgments [8, 9].

Can et al. proposed the first computational model towards
identifying Reflections, a major class of codes in MISC [10].

Maximum entropy Markov model with word N-gram features

and code context achieved the best performance. Atkins et al.

employed labeled topic models to predict a set of 12 MISC
codes on talk turn and psychotherapy session levels [11]. They

compared coder-coder vs. computer-coder agreement on each

code. Can et al. proposed a method using conditional random

field to model the sequence of MISC codes, which predicted ex-
pert judgments on the full MISC code set [12]. They incorpo-

rated word N-grams, MISC codes, speaker roles (therapist and

client) and context from neighboring utterances in the feature

functions. Tanana et al. proposed two competing methods to
predict MISC codes for each utterance [13,14]. One of the pro-

posed methods was a large multinomial regression model based

on word N-grams and dependency relations in the parsing tree

of an utterance. The other was a recursive neural network model
(to be distinguished from recurrent neural network) based on

the parsing tree and word embeddings. They found that the two

methods were comparable in performance while the regression

model was slightly better. In general, previous work has shown
that prediction accuracy for a code relates to the degree of the

code’s sparsity and the level of human agreement [11].

In this work, our main focus is on therapist code prediction,
although we also briefly discuss predicting client codes. For

simplicity, we treat each utterance as an independent sample

without context. We first set up the Maximum Entropy (Max-

Ent) model as a baseline for MISC code prediction. The Max-

Ent model is in the family of log-linear models, which have
achieved good performance in a wide range of natural language

processing tasks [15, 16]. We also choose this model because

similar methods have been used in previous work on MISC code

prediction [10, 12].

We then employ Recurrent Neural Networks (RNNs) in a

deep learning framework and examine their performances in
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comparison to the baseline. Specifically, we use Long Short-
Term Memory (LSTM) [17] and Gated Recurrent Unit (GRU)

[18] RNNs in order to address the “vanishing gradient problem”

associated with simple RNNs. These models have achieved

state-of-the-art results in a number of machine learning tasks
[19, 20]. We design the network architecture as either consum-

ing the input text stream only in the forward direction or in both

the forward and backward directions. We represent words with

word embeddings, which are generated by two types of “word-
to-vector” transformations — either trained on domain relevant

data or generic data [21]. We compare the results achieved

by different combinations of the above network units, architec-

tures, and word embeddings.

2. Method

We assume each utterance is represented by a word sequence
w = {w0, w1, · · · , wL−1}, where L is the number of words in

the utterance. We then assume a function c = f(w) maps w to

a MISC code c ∈ {1, 2, · · · , C}, with C being the count of de-

fined code types. Our goal is to find the function f∗ minimizing
the error between the predicted and expert annotated codes.

2.1. Maximum Entropy Model

The MaxEnt model [16] derives the posterior probability
P (c|w) based on a group of feature functions fi(w, c), as

shown in (1). Here λ and Z(w) denote the weights and the

partition function, respectively. The predicted code c∗ is the

one maximizing P (c|w).

P (c|w) =
1

Z(w)
exp

(∑
i

λifi(w, c)

)
(1)

In this work, the feature functions are simple word N-gram

(up to tri-gram) counts. An example feature function is shown

in (2).

fi(w, c) =

L−2∑
j=0

gi((wj , wj+1), c) (2)

The function gi describes the case that a bi-gram pattern (p̂, q̂)
is associated with code ĉ. g((p, q), c) = 1 if (p, q) = (p̂, q̂) and

c = ĉ, otherwise it equals 0. The feature function fi(w, c) then

counts the appearances of (p̂, q̂) in w if c = ĉ. The weights

λ are learned on the training set. We use the L-BFGS algo-
rithm [22] for optimization and the MaxEnt toolkit in [23] for

implementation.

2.2. Recurrent Neural Networks

We employ two types of neural network architectures — either

consuming inputs only in the forward direction (uni-directional)

or in both the forward and backward directions (bi-directional),

as demonstrated in Fig. 1 and Fig. 2, respectively.

The bottom layer of the network is a word-embedding layer.

Word embeddings represent words in a lower dimensional, con-

tinuous vector space, instead of integer indices or vectors in the
dimensionality of the vocabulary [21]. The word vector space

is not only an efficient data representation, but also captures se-

mantic relations between words such that words close in mean-

ing are also close in the space. The word-embedding layer is

initialized using a pre-trained model, which was trained on a
large text corpus in an unsupervised manner based on word co-

occurrence statistics. This layer is then fine-tuned during train-

ing. We examine two sources for pre-training the word embed-
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Figure 1: Uni-directional neural network architecture.
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Figure 2: Bi-directional neural network architecture.

dings, either from in-domain or generic text data. Specifically,

we use the gensim [24] toolkit for training in-domain word em-
beddings, and use the word embeddings generated on Wikipedia

and Gigaword-5 data using the GloVe toolkit [25] as generic

word embeddings.

The recurrent layer takes one word vector at a time as its
input, and passes down its internal states. We take the output of

the recurrent unit at the last time instance as the layer’s output,

because we are only interested in the complete meaning of an

utterance. We examine two types of recurrent units, namely
LSTM [17] and GRU [18]. Both of them have gated struc-

tures to control input and output flows, in order to eliminate

the “vanishing gradient” in error back-propagation during train-

ing. This enables a network to capture long-distance relations
in sequential data. In this work, we threshold word sequence

lengths (denoted as T in Fig. 1 and Fig. 2) to 50, which covers

more than 99% of utterances in the dataset. Longer utterances

are truncated, while shorter ones are padded with zeros. In the
bi-directional network, the utterance is first reversed then trun-

cated for the backward flow. We set a dropout rate of 0.2 for the

recurrent layer to prevent overfitting.

At the top of the uni-directional network, a fully connected

layer of hidden neurons (i.e., dense layer) takes the output vec-

tor of the recurrent layer, and maps it to a vector of scores in

the dimension of MISC codes. In the training phase, the score
vector is set to 1 in the corresponding dimension of the MISC

code, and 0 elsewhere. We use softmax activation for the output

of the dense layer and train the network to optimize the categor-

ical cross-entropy loss function using ADAM algorithm [26].
In the testing phase, the code associated with the highest score

is selected as the prediction. For the bi-directional network, we

add another dense layer between the recurrent layer and the top

layer. This layer concatenates the outputs from the forward and

backward recurrent units, and allows them to interact before the
top layer. We also set a dropout rate of 0.2 for this layer. We

use the Keras toolkit [27] with the Theano [28] back-end for

implementation.
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3. Data Corpus

The domain relevant data come from six large scale MI studies.

Five of them are intervention studies targeting alcohol abuse

by young people (ARC, ESPSB, ESP21), marijuana abuse
(iCHAMP), and poly-drug abuse (HMCBI) [11]. Due to re-

source constrains, 148 out of a total of 899 sessions were ran-

domly selected for manual coding. The sixth study is aimed

at therapist training and involves real and standardized patients
(i.e., role-played) [29]. Of the 826 sessions, 195 were randomly

selected for manual coding. Sessions last from 20 minutes to 1

hour.

The selected sessions were manually transcribed with talk-

turn level time stamps. The transcripts include verbal and non-

verbal vocal behaviors such as disfluencies, laughters, back-
channels, and overlapped speech. Trained human coders con-

ducted MISC coding based on the audio recordings and tran-

scripts. Each turn may contain multiple codes; coders make

subjective judgments on the necessity to segment a turn into
multiple utterances, each having a complete thought and a

unique code. Some sessions were MISC coded more than once

to measure inter- and intra-coder reliability, while the majority

were coded only once. The ratio of utterances having coder dis-
agreement is less than 4%; we thus randomly pick one of the

assigned codes for each utterance as the reference label.

Table 1: MISC code grouping and counts in the dataset.

Code Original MISC code Count

Therapist

FA Facilitate 15973

GI Giving information 18120

RES Simple reflection 6390

REC Complex reflection 4053

QUC Closed question (Yes/No) 6343

QUO Open question (Wh- type) 5597

MIA

MI adherent: Affirm; Reframe;

5984
Emphasize control; Support; Filler;

Advice with permission; Structure;

Raise concern with permission

MIN

MI non-adherent: Confront; Direct;

1299Advice without permission; Warn;
Raise concern without permission

Client

FN Follow/Neutral 52333

POS

Change talk: positive valence of

6630Reason; Commitment;

Taking steps; Other

NEG
Sustain talk: negative valence of

6218
the previous row

The original MISC code set contains 28 codes. Some of

them are too sparse in the data to support statistically meaning-

ful models. Can et al. proposed grouping 19 therapist codes
into 7 categories, and all 9 client codes into a single category to

address this issue [12]. Six of the seven therapist categories are

identical to the original MISC codes, while the last one covers

all the remaining codes. In this work, we split the last cate-

gory according to whether the code represents MI adherent or
non-adherent behavior, i.e., whether it follows the spirit of MI.

We categorize client codes according to the valence of chang-

ing, sustaining, or being neutral to the addictive behavior [11].

Therefore, we have 8 and 3 classes for therapist and client code
prediction, respectively. For the experiments, we employ a sub-

set of utterances that do not have overlapped speech, taking

about 75% of all utterances. The grouped and original MISC

codes along with the grouped counts in the dataset for the ex-
periments are summarized in Table 1.

We split the data into training/testing parts by sessions with

roughly 2:1 ratio. The split is speaker independent, i.e., ther-

apists and standardized patients in training do not appear in
test. For tokenization, we remove punctuations except apos-

trophes, replace underscores with spaces, normalize non-verbal

vocalizations into “laughter” or “vocal noise”, and finally low-

ercase all text. An additional text corpus of psychotherapy tran-
scripts (called “general psychotherapy corpus”, 6.5M words) is

added to the word-embedding training [30]. Data sizes for ther-

apist/client are summarized in Table 2.

Table 2: Session, utterance, and word counts in train/test splits.

Subject Sessions Utterances Words

Therapist 236 / 101 41236 / 22523 444K / 237K

Client 236 / 101 42330 / 22851 475K / 258K

4. Experimental Results

4.1. Therapist Code Prediction

For the MaxEnt approach, we found the combination of uni-,

bi- and tri-gram features yielded the highest accuracy. For the

RNN approach, we employed the general psychotherapy cor-

pus and the MISC utterances, except the therapist samples from
the test set, to train the in-domain word embeddings. In RNN

training, the last 10% of the training utterances were used as

a validation set. Word vector dimensionality of 100 and 200

were the best for in-domain and generic word embeddings, re-
spectively. For the in-domain word-embedding, CBOW method

was superior to skip-gram. The recurrent units had internal di-

mensionality of 256. The dense layers on top of the uni- and

bi-directional networks had 256 input dimensions. The dense
layer in the middle of the bi-directional network had 512 and

256 input and output dimensions, respectively. We trained the

RNNs with an early-stop strategy, i.e., if the current epoch does

not reduce the loss function or prediction error on the validation
set, then the previous epoch is considered final.

The MaxEnt model obtained an overall accuracy (i.e., per-

centage of correct classifications) of 72.17% on therapist code

prediction. In Table 3 we report the overall accuracies by the
RNNs. We can see that the RNNs exceeded the MaxEnt model.

The best result of 75.03% was achieved using in-domain word

embeddings and GRU units in a bi-directional network, which

was a 2.86% absolute improvement over the MaxEnt baseline.
Kappa values of agreement to the target labels for the best Max-

Ent and RNN results are 0.652 and 0.686, respectively. In gen-

eral, GRU, in-domain word embeddings, bi-directional archi-

tecture outperformed LSTM, generic word embeddings, uni-
directional architecture, respectively. GRU was more compu-

tationally efficient compared to LSTM — the training epochs

for the latter were about 1.8 times slower. Training in most con-

figurations finished in less than 10 epochs. Bi-directional setups

generally required fewer epochs, though each epoch was about
2 times slower.

Table 4 shows the confusion matrix of target codes and

the best RNN predictions. FA is well separated from others,
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Table 3: Overall therapist code prediction accuracies (percent-

age) by the RNNs.

Uni-directional Bi-directional

Word-embedding LSTM GRU LSTM GRU

In-domain 74.67 74.75 74.75 75.03

Generic 73.48 73.91 73.55 73.55

The best accuracy by the MaxEnt model is 72.17%.

which covers mostly phrases to keep the conversation going,

such as “okay” and “yeah”. RES and REC are confused with

each other due to their subtle difference, i.e., whether the thera-

pist adds meaning or emphasis when reflecting the client’s state-
ment. QUC and QUO are relatively well predicted possibly due

to their linguistic structures. QUC is confused with RES possi-

bly because RES could be carried out in a question form. There

are some confusions between QUC and QUO. Though typically
QUC and QUO are “Yes/No” and “Wh- type” questions, coding

is based on the semantic meaning concerning whether it looks

for a specific answer or invokes the client to tell more (e.g.,

“where do you live?” warrants a QUC code). MIA and MIN
are relatively well separated from each other, which is desirable

for treatment fidelity assessment.

GI, the largest class, is confused with all the others. GI

and reflections are mistaken for each other possibly due to the
lack of context, e.g., the previous client statement. GI and ques-

tions (especially QUC) are confusing likely due to the lack of

prosodic information, e.g., a rising pitch in the end may indi-

cate a question instead of a statement. GI and MIA, MIN are
confused likely due to the subtleness of attitude — GI marks

a neutral valence of providing information and educating the

client; MIA indicates a motivating and supportive attitude; and

MIN indicates a directive and critical attitude. Prosodic infor-
mation may potentially help distinguishing GI and MIA, MIN

as it may indicate the therapist’s attitude. Errors on MIN are

also partly due to sparse training samples in this class.

Table 4: Confusion matrix of therapist code prediction us-

ing RNN (in-domain word embeddings, bi-directional GRUs).

Rows represent manual coding; columns represent predictions.

FA GI RES REC QUC QUO MIA MIN

FA 5606 47 22 0 20 4 56 0

GI 149 5529 419 135 152 55 325 27

RES 34 578 1015 230 118 24 84 4

REC 3 350 409 514 49 12 40 4

QUC 23 202 202 21 1494 199 27 4

QUO 6 79 23 5 158 1666 20 1

MIA 101 714 104 62 35 27 1062 3

MIN 4 173 17 18 26 6 15 12

4.2. Client Code Prediction

The best performing setup of MaxEnt and RNN models

achieved overall accuracies of 80.77% and 82.39% for predict-
ing client codes, respectively (word embeddings pre-trained on

all but client test utterances plus the general psychotherapy cor-

pus). However, as shown in Table 1 client codes were highly

biased to FN. Neither of the two models exceeded the chance

level of 82.78%.
Client change/sustain-talk are arguably more important be-

haviors. To better detect them, errors on these codes may have

higher weights in the loss function in RNN training. We set the

weight to 1.0 for FN, while sample the weights from 1.0 to 4.0
for POS/NEG. In Table 5 we report the F1 scores and Kappa

values. As the weight becomes higher, F1 scores of POS/NEG

and the Kappa value increase while the F1 score for FN de-

creases. However, the problem is still challenging. Dispropor-
tion of codes and the lack of contextual modeling may be rea-

sons for the gap.

Table 5: F1 scores and Kappa in client code prediction.

Method
F1 score

Kappa
FN POS NEG

MaxEnt 0.897 0.234 0.264 0.224

RNN, 1.0 0.906 0.174 0.218 0.180

RNN, 2.0 0.900 0.245 0.214 0.214

RNN, 3.0 0.888 0.276 0.258 0.253

RNN, 4.0 0.870 0.300 0.286 0.272

4.3. Empirical Comparison With Previous Work

We review performances in the previous work (mentioned in

Section 1), and empirically compare them with the current re-

sults, shown in Table 6. Note that because of differences on
code/data selection, exact comparisons are not available. RNN

and CRF are comparable though context information is not used

in the current RNN model. Gaps between human-RNN and

human-human agreements are larger for POS, NEG, and REC.

Table 6: Comparison of code prediction performances.

F1 score Kappa

Code DSF [13] CRF [12] RNN Human [11] RNN

FA 0.94 0.94 0.96 - 0.95

GI 0.69 0.74 0.76 0.76 0.65

RES 0.48 0.49 0.47 0.52 0.42

REC 0.39 0.45 0.43 0.61 0.40

QUC 0.68 0.72 0.71 0.76 0.68

QUO 0.77 0.81 0.84 0.86 0.83

POS 0.29 - 0.30 0.63 0.21

NEG 0.27 - 0.29 0.66 0.22

5. Conclusion

Automatic coding of therapist and patient behaviors is pivotal to

scaling up psychotherapy research and treatment fidelity assess-
ment. Computational methods have been proposed to predict

expert judgments on MISC codes given the word sequences. In

this paper, we have constructed RNN models to predict expert-

annotated MISC codes. Experimental results demonstrate that

RNNs achieve better performance than MaxEnt models for pre-
dicting therapist codes. In particular, the network with in-

domain word embeddings and bi-directional GRUs offered the

best performance. Improvement on client code prediction is ob-

tained but the problem is still challenging.
In the future, we plan to incorporate prosodic features to

better discriminate codes having similar lexical forms. The

alignment between words and the speech signal can be de-

rived by force-alignment using an automatic speech recognizer.
Context modeling and hierarchical neural network architectures

may be helpful to capture dependencies on the utterance and

turn levels. The long term goal is to fully automate the system

by using ASR output for code prediction [31].
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