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Abstract: It is well-known that the performance of acoustic-to-
articulatory inversion improves by smoothing the articulatory
trajectories estimated using Gaussian mixture model (GMM) mapping
(denoted by GMMþ Smoothing). GMMþ Smoothing also provides
similar performance with GMM mapping using dynamic features,
which integrates smoothing directly in the mapping criterion. Due to
the separation between smoothing and mapping, what objective crite-
rion GMMþ Smoothing optimizes remains unclear. In this work a new
integrated smoothness criterion, the smoothed-GMM (SGMM), is
proposed. GMMþ Smoothing is shown, both analytically and experi-
mentally, to be identical to the asymptotic solution of SGMM suggest-
ing GMMþ Smoothing to be a near optimal solution of SGMM.
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1. Introduction

The vocal articulators such as jaw, lips, tongue, and velum (VEL) move in a coordi-
nated fashion when a person speaks. The articulators, however, move at a slower rate
compared to the vocal tract resonance frequencies. It is sufficient to sample articula-
tory movements at 200 Hz to capture detailed dynamics of the critical speech articula-
tors1 (compared to sampling the speech signal which requires a rate of 7.6 kHz even
for telephone quality). The slow rate of articulatory movement causes the articulatory
trajectories to be smooth and low-pass in nature; this is borne out in measurements
obtained using techniques such as Electromagnetic Articulography (EMA)2 and
UltraSound.3 This fact is exploited in speech modeling, including notably in acoustic-
to-articulatory (AtoA) inversion that attempts to recover articulatory details from the
speech signal. In particular, inversion performance has been demonstrated to improve
by smoothing the estimated articulatory features either in a post-processing step4 or by
incorporating smoothness directly in the estimation criterion.4,5

There are several AtoA inversion techniques, and Toutios and Margaritis6

provide a comprehensive summary of them. Among these techniques, we focus on the
AtoA inversion based on Gaussian mixture model (GMM) mapping.4 In GMM based
mapping, articulatory features are estimated separately in each analysis frame from
acoustic features using the minimum mean squared error (MMSE) criterion. This

a)Author to whom correspondence should be addressed.
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causes the estimated articulatory feature trajectory to be rough and jagged in nature.
To obtain a realistic articulatory trajectory from the GMM based estimate, the esti-
mated trajectory is low-pass filtered where the cutoff frequency of the low-pass filter is
selected to achieve the best inversion performance.4 Toda et al.4 also proposed a
GMM mapping using dynamic features under the maximum-likelihood criterion (thus
integrating smoothing directly in the mapping process), which was found to yield a
similar performance with GMM mapping followed by low-pass filtering (denoted by
GMMþ Smoothing). It is important to note that in GMMþ Smoothing, the smoothed
articulatory features no longer remain optimal in MMSE sense. This suggests that a
criterion different from MMSE could correspond to the estimates obtained using
GMMþ Smoothing which, in fact, yields a better inversion performance than the
MMSE criterion and a similar performance with dynamic feature based GMM
mapping.

We propose a new smoothness criterion for inversion, called smoothed-GMM
(SGMM), which combines smoothness with the information from GMM mapping
within the same optimization framework rather than performing them separately.
GMM mapping is shown to be a special case of SGMM. It is also analytically shown
that GMMþ Smoothing matches the solution of SGMM in the limit when the length
of the test utterance becomes large. Experimental results on an articulatory database
reveal that in practice this asymptotic limit is achieved even for an average utterance
length of �2.75 s with a frame rate of 100 Hz. Thus, both theoretically and experimen-
tally, GMMþ Smoothing turns out to be a near optimal solution of SGMM.

2. The SGMM criterion

Suppose the acoustic and articulatory feature vectors at the nth frame are denoted by
xn and yn, respectively. xn ¼ ½x1

n x2
n � � � xI

n�
T and yn ¼ ½y1

n y2
n � � � yJ

n �
T, where xi

n is the
ith acoustic feature ð1 � i � IÞ and yj

n is the jth articulatory feature ð1 � j � JÞ. T
denotes the transpose operator. In GMM based AtoA inversion, a GMM is used to
model the joint probability pðxn; ynjHÞ given by pðxn; ynjHÞ ¼ RM

i¼1wiN
ðxn; yn; li; RiÞ. H are the GMM parameters fwi; li; RigM

i¼1, where M is the number
of mixture components. wi denotes the mixture weight for the ith mixture. li ¼
½lðxÞTi lðyÞTi �T is the mean vector of the ith mixture and lðxÞi and lðyÞi denote the mean
vectors of the ith mixture for xn and yn, respectively. Similarly Ri denotes the full co-
variance matrix of ith mixture, which is given by

Ri ¼
RðxxÞ

i RðxyÞ
i

RðyxÞ
i RðyyÞ

i

" #
;

where RðxxÞ
i and RðyyÞ

i denote the covariance matrices of the ith mixture for xn and yn,
respectively, and RðxyÞ

i , RðyxÞ
i represent the cross-covariance matrices of the ith mixture.

Given an acoustic feature vector sequence of length N frames, xn, 1 � n � N,
the goal of AtoA inversion is to estimate the corresponding articulatory feature vector
sequence, ŷn, 1 � n � N.

In GMM-based inversion,4 ŷn is defined as the MMSE estimate given xn:7

ŷn¢EðynjxnÞ ¼
XM
i¼1

pðmijxn; HÞEðynjxn; mi; HÞ; (1)

where pðmijxn;HÞ ¼ wiN
�

xn;lðxÞi ; RðxxÞ
i

�
=RM

j¼1wjN
�

xn; lðxÞj ; RðxxÞ
j

�
and Eðyn jxn;mi; HÞ

¼ lðyÞi þRðyxÞ
i RðxxÞ�1

i

�
xn� lðxÞi

�
. Note that Ripðmi jxn; HÞ ¼ 1.

Toda et al.4 reported that smoothing ŷn by low-pass filtering makes the esti-
mated articulatory trajectory more realistic and improves the inversion performance.
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Here we propose a new smoothness criterion, called SGMM which constrains the esti-
mated trajectory to be smooth to a required degree while estimating the trajectory
from the GMM mapping information. Thus, instead of estimating articulatory features
in each frame independently (as done in GMM-based inversion), the SGMM criterion
estimates the articulatory trajectory for an entire utterance. The jth articulatory feature
trajectory is estimated by solving the following optimization problem:

fŷj
n; 1 � n � Ng ¼ argmin

fzj
ng

Jðfzj
n; 1 � n � NgÞ

¼ argmin
fzj

ng
Cj
X

n

X
i

pðmijxn; HÞðzj
n �Eðyj

njxn; mi; HÞÞ2

þ ð1� CjÞ
X

n

X
k

zj
khj

n�k

� �2
: (2)

J is the objective function comprised of a convex combination of two terms with the
convex weight Cjð0 � Cj � 1Þ. zj

n is the optimization variable. The second term in J is
the total energy of the output of a high-pass filter with impulse response hj

n (corre-
sponding to the jth articulator) with zj

n as input. By minimizing the output of a high-
pass filter, SGMM constrains the solution to be low-pass or smoothly varying in na-
ture. hj

n could be designed based on the degree of required smoothness for jth articula-
tor trajectory.

The first term in J is designed so that it utilizes the mapping between acoustic
and articulatory spaces using the conditional means with their weights derived from
the GMM. The choice of Cj provides a trade-off between the GMM mapping and the
smoothness factor. The optimization in Eq. (2) is solved for j ¼ 1; …; J separately to
obtain the estimates of all J articulatory feature trajectories.

3. Solution SGMM criterion based optimization

The objective function J in Eq. (2) is a convex (and quadratic) function of the optimi-
zation variables fzj

n; 1 � n � Ng. Thus a global minimum is guaranteed. We define the
autocorrelation sequence of the high-pass filter hj

n as Rj
l�k¢Rnhj

n�khj
n�l. For minimiza-

tion, the partial derivatives of J with respect to zj
n are set to zero at zj

n ¼ ŷj
n to obtain

a set of N equations in the following matrix vector form:

ð1� CjÞRj
0 þ Cj ð1� CjÞRj

1 � � � ð1� CjÞRj
N�1

ð1� CjÞRj
�1 ð1� CjÞRj

0 þ Cj � � � ð1� CjÞRj
N�2

� � � �

ð1� CjÞRj
�ðN�1Þ ð1� CjÞRj

�ðN�2Þ � � � ð1� CjÞRj
0 þ Cj

0
BBBB@

1
CCCCA

ŷ j
1

ŷ j
2

�

ŷ j
N

0
BBBB@

1
CCCCA ¼

CjDj
1

CjDj
2

�

CjDj
N

0
BBBB@

1
CCCCA;

(3)

where Dj
l ¼ Ripðmijxl ; HÞ Eðyj

ljxl; mi; HÞ. We can further write the set of equations as
ðð1 � CjÞRj þ CjIÞŷj ¼ Cjdj, where Rj ¼ fRj

klg ¼ fR
j
k�lg ¼ fR

j
jk�ljg (since the autocor-

relation matrix is symmetric), I is N �N identity matrix, ŷj ¼ ½ŷj
1; � � � ŷ

j
N �

T and
dj ¼ ½Dj

1; � � � ;D
j
N �

T. Rj is an autocorrelation matrix and hence symmetric toeplitz.
Thus, ðð1 � CjÞRj þ CjIÞ is invertible for any choice of Cjð0 < Cj < 1Þ. The estimate
of the jth articulatory feature trajectory thus can be obtained as follows:

ŷj ¼ Cjðð1� CjÞRj þ CjIÞ�1dj ¼ Iþ 1� Cj

Cj Rj

� ��1

dj: (4)

When Cj ¼ 0 in Eq. (4) (i.e., only the second term in J is considered), the estimated
trajectory ŷj is trivially zero. In other words, when no GMM mapping information is
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included in the objective function J, the maximally smooth solution is an all zero tra-
jectory. On the other hand when Cj ¼ 1 (i.e., no smoothness constraint is imposed on
the estimated articulatory trajectory), ŷj ¼ dj or ŷj

n ¼ Dj
n ¼ Ripðmijxn; HÞ

Eðyj
njxn; mi;HÞ, which is identical to the GMM mapping based estimate [Eq. (1)].

Thus, GMM based inversion is a special case of the optimization using the proposed
SGMM criterion. For 0 < Cj < 1, the estimated trajectory lies between the extremes
of the all-zero trajectory and the jagged trajectory obtained using GMM based
inversion.

Rj is, in general, an N�N positive semi-definite symmetric toeplitz matrix
with its entries coming from the autocorrelation sequence of hj

n (i.e., Rj
n) with the cor-

responding spectrum jHjðxÞj2. Rj is also a convolution matrix with the corresponding
impulse response Rj

n. Let qj ¼ ð1� CjÞ=Cj. Hence, Iþ qjRj is an N �N positive defi-
nite symmetric toeplitz matrix with the related spectrum 1þ qj jHjðxÞj2. Note that
1þ qj jHjðxÞj2 > 0, 8x; the addition of “1” acts as a regularization ensuring the invert-
ibility of the spectrum 1þ qj jHjðxÞj2 (similar to I for the invertibility of Iþ qjRj).
Using a result from the inverse of the toeplitz matrix [Eq. (5.5) in Ref. 8], it is easy to
show that ðIþ qjRjÞ�1 is asymptotically (as N !1) toeplitz with the corresponding
spectrum jGjðxÞj2 ¼ 1=ð1þ qjjHjðxÞj2Þ. Since jHjðxÞj2 is a high-pass spectrum and
qj > 0, it is easy to see that jGjðxÞj2 is a low-pass spectrum, where qj controls the stop
band attenuation of the low-pass filter. Hence, in the limit N !1, ðIþ qjRjÞ�1 acts
as a convolution matrix with a corresponding impulse response Qj

n of a low-pass filter
with spectrum jGjðxÞj2, where Qj

n is the inverse Fourier transform of jGjðxÞj2. Thus,
asymptotically ŷj [Eq. (4)] is a low-passed or smoothed version of dj, the GMM based
estimate. Thus we prove that the solution of SGMM asymptotically matches
GMMþ Smoothing.

For illustration, we consider a fifth order rational transfer function ðHðxÞÞ of
a type II Chebyshev high-pass filter with a 40 dB attenuation at 10 Hz with sampling
frequency 100 Hz as shown in Fig. 1. For finite N, we pick the N/2th (N/2þ1th for
even N) row of ðIþ qRÞ�1 as the representative impulse response Pn for ðIþ qRÞ�1.
We compute the mean squared error (MSE) EP�Q between Pn and Qn over the same
support as shown in Fig. 1(d) for different values of q. It is clear that EP�Q becomes
zero for N¼ 150 (corresponds to 1.5 s with 100 Hz frame rate) for q¼ 999. For q¼ 99
and 9, EP�Q becomes zeros even for lower values of N indicating the asymptotic equiv-
alence between ðIþ qRÞ�1 and jGðxÞj2.

4. Experimental evaluation

While we argue in Sec. 3 that the solution of SGMM asymptotically matches
GMMþ Smoothing, it is important to note that the low-pass filter in the limit has a
frequency response of the form ð1þ qjHðxÞj2Þ�1 [i.e., infinite impulse response (IIR)
filter] in the case of SGMM, but in the case of GMMþ Smoothing the low-pass filter
can be either finite impulse response or IIR and its frequency response need not have a
specific form. We conduct AtoA inversion experiments on an articulatory dataset com-
prising utterances of different lengths to examine the role that the particular form of a

Fig. 1. (Color online) Illustration of the asymptotic equivalence between ðIþ qRÞ�1 and a low-pass convolution
matrix with spectrum jGðxÞj2 ¼ ð1þ qjHðxÞj2Þ�1 (index “j” is omitted for simplicity): (a) A high-pass spectrum
HðxÞ, (b) 1þ qjHðxÞj2, (c) jGðxÞj2, and (d) MSE between impulse response Pn representing ðIþ qRÞ�1 and
Qn, the inverse Fourier transform of jGðxÞj2.
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low-pass filter in SGMM may play on the inversion performance, specifically for dif-
ferent choices of N. The dataset and experimental details are described below.

4.1 Dataset and pre-processing

For the AtoA experiment, we use the Multichannel Articulatory (MOCHA) database9

that contains speech and the corresponding EMA data from one male and one female
talker of British English. The EMA data consists of dynamic positions of the EMA sen-
sors in the mid-sagittal plane of the talker. A total of seven sensors are placed on the
upper lip (UL), lower lip (LL), lower incisor (JAW), tongue tip (TT), tongue body (TB),
tongue dorsum (TD), and VEL. Following the preprocessing steps outlined by Ghosh
and Narayanan,5 we obtain parallel acoustic and articulatory data at a frame rate of
100 observations/s. We use 14 dimensional raw EMA features for representing the artic-
ulatory space (i.e., X and Y co-ordinates of 7 EMA sensors), namely ULx, LLx, JAWx,
TTx, TBx, TDx, VELx, ULy, LLy, JAWy, TTy, TBy, TDy, and VELy. Acoustic fea-
tures are represented by 39 dimensional Mel-frequency cepstral coefficients (MFCCs)
and are computed using 20 msec analysis frame length with 10 msec shift.

4.2 Experimental setup

AtoA inversion is performed separately on the male and female subjects of the
MOCHA corpus using a fivefold cross-validation setup. Inversion performance is
measured over all sentences of all folds through average root mean squared error
(RMSE) and Pearson correlation coefficient (PCC)10 between the original and esti-
mated articulatory trajectories.

Following the finding by Toda et al.,4 64 mixture component GMMs are used
to model the acoustic-articulatory map in the training data separately for each fold. In
the case of SGMM, we use a fifth order type II Chebyshev high-pass filter with 40 dB
stop band attenuation as hj

n with cut-off frequency f j
c for the jth articulator. Different

values of f j
c and Cj were experimented with -f j

c 2 f3þ 0:5 ðk � 1ÞHz; k ¼ 1; � � � ; 45g
and Cj 2 f0:001; 0:005; 0:01; 0:05; 0:1; 0:5; 0:9; 0:99; 0:999g. We report AtoA inversion
performance corresponding to the f j

c and Cj combination which gives the least average
RMSE. In the case of GMMþ Smoothing, a fifth order type II Chebyshev low-pass fil-
ter with 40 dB stop band attenuation is used for smoothing whose cut-off frequency is
also varied over the same range as that for hj

n and the best performance among these
is reported for each articulator.

4.3 Results and discussions

Figure 2 shows the AtoA inversion performance in terms of RMSE and PCC for each
articulator of both subjects in the MOCHA corpus. It is evident that the inversion

Fig. 2. Comparison of SGMM and GMMþ Smoothing - error bars indicate average inversion performance
with 6 one standard deviation.
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performances using SGMM and GMMþ Smoothing are not significantly different.
Thus, inversion experiments support our theoretical finding that GMMþ Smoothing is
a near optimal solution of the SGMM criterion. An advantage of using SGMM over
GMMþ Smoothing is that the solution of SGMM can be computed in a recursive
manner.5 Optimal choices of Cj in the case of the male and female subjects turn out to
be in the range of 0.005 to 0.1 suggesting low-pass filters with high stop band attenua-
tion to be preferred in SGMM. If the length of a sentence is too short to satisfy the as-
ymptotic limit, the length of the sentence could be increased by appending it with
silence and then considering articulatory features only in the segment of interest. It
should also be noted that the functional forms of generalized smoothness criterion
(GSC)5 and SGMM appear to be similar except that in GSC the training data is used
in a non-parametric fashion while SGMM uses parameters of a GMM learned from
the training data.

Given a high-pass filter jHðxÞj2 in SGMM, one can always find a low-pass
filter jGðxÞj2 ¼ ð1þ qjHðxÞj2Þ�1 and perform GMMþ Smoothing with jGðxÞj2 to
achieve an inversion performance similar to SGMM with jHðxÞj2. However, the
opposite is not true in general. This is because any arbitrary low-pass filter AðxÞ
cannot be put in the form ð1þ qjHðxÞj2Þ�1. For example, the type II Chebyshev
low-pass filter used in AtoA experiments is not in this particular form. In spite of
that the AtoA inversion performances using GMMþ Smoothing and SGMM turn
out to be similar. This suggests that although it could be difficult to find a high-pass
filter HðxÞ in SGMM corresponding to an arbitrary low-pass filter AðxÞ in
GMMþ Smoothing, SGMM with a high-pass filter different from HðxÞ could
lead to a similar inversion performance as that of GMMþ Smoothing with AðxÞ.
For a given A(x), one could also find a low-pass filter of the form ð1þ qjHðxÞj2Þ�1

that best approximates A(x) and then SGMM with the corresponding H(x) as the
high-pass filter will lead to an inversion performance similar to that of
GMMþ Smoothing with AðxÞ.

5. Conclusions

We present a new unified criterion (SGMM) for estimation and smoothing for AtoA
inversion; its solution is shown, both theoretically and experimentally, to be identical
to the individually optimized GMMþ Smoothing based solution in the limiting case.
In practice, these results seem to hold for utterances just a few seconds long. Since in
GMMþ Smoothing based inversion the GMM mapping and smoothing are performed
separately, this finding offers an additional insight as to what underlying criterion is
being optimized in GMMþ Smoothing.

References and links
1S. Ouni and Y. Laprie, “Studying pharyngealization using an articulograph,” International Workshop on
Pharyngeals and Pharyngealisation (2009).

2S. J. Perkell, M. Cohen, M. Svirsky, M. Matthies, I. Garabieta, and M. Jackson, “Electromagnetic mid-
sagittal articulometer systems for transducing speech articulatory movements,” J. Acoust. Soc. Am. 92,
3078–3096 (1992).

3T. Shawker, M. Stone, and B. Sonies, “Tongue pellet tracking by ultrasound: Development of a
reverberation pellet,” J. Phonetics 13, 134–146 (1985).

4T. Toda, A. Black, and K. Tokuda, “Acoustic-to-articulatory inversion mapping with Gaussian mixture
model,” in Proceedings of the ICSLP, Jeju Island, Korea (2004), pp. 1129–1132.

5P. K. Ghosh and S. S. Narayanan, “A generalized smoothness criterion for acoustic-to-articulatory
inversion,” J. Acoust. Soc. Am. 128(4), 2162–2172 (2010).

6A. Toutios and K. Margaritis, “Acoustic-to-articulatory inversion of speech: A review,” in Proceedings
of the International 12th TAINN (2003).

7F. Faubel, J. McDonough, and D. Klakow, “Bounded conditional mean imputation with Gaussian
mixture models: A reconstruction approach to partly occluded features,” IEEE Trans. Acoust., Speech,
Signal Process. 1, 3869–3872 (2009).

P. K. Ghosh and S. S. Narayanan: JASA Express Letters [http://dx.doi.org/10.1121/1.4813590] Published Online 17 July 2013

J. Acoust. Soc. Am. 134 (2), August 2013 P. K. Ghosh and S. S. Narayanan: Smoothing articulatory features in inversion EL263

Downloaded 02 Oct 2013 to 128.125.163.224. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



8R. M. Gray, “Toeplitz and circulant matrices: A review,” Found. Trends Commun. Inf. Theory 2(3),
155–329 (2005) (available at http://ee.stanford.edu/ gray/toeplitz.pdf).

9A. A. Wrench and H. J. William, “A multichannel articulatory database and its application for
automatic speech recognition,” in 5th Seminar on Speech Production: Models and Data, Bavaria (2000),
pp. 305–308.

10D. R. Cox and D. V. Hinkley, Theoretical Statistics (Chapman and Hall, London, 1974), Appendix 3.

P. K. Ghosh and S. S. Narayanan: JASA Express Letters [http://dx.doi.org/10.1121/1.4813590] Published Online 17 July 2013

EL264 J. Acoust. Soc. Am. 134 (2), August 2013 P. K. Ghosh and S. S. Narayanan: Smoothing articulatory features in inversion

Downloaded 02 Oct 2013 to 128.125.163.224. Redistribution subject to ASA license or copyright; see http://asadl.org/terms

http://ee.stanford.edu/

	s1
	n1
	s2
	d1
	d2
	s3
	d3
	d4
	s4
	f1d
	f1
	s4A
	s4B
	s4C
	f2
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10

