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TaggedPAbstract

Recent advances in real-time magnetic resonance imaging (RT-MRI) have made it possible to study the anatomy and dynamic

motion of the vocal tract during speech production with great detail. The abundance of rich data on speech articulation provided

by medical imaging techniques affords new opportunities for speech science, linguistics, clinical and technological research and

application development, but also presents new challenges in audio�video data analysis and data modeling. We review techni-

ques used in analysis of articulatory data acquired using RT-MRI, and assess the utility of different approaches for different types

of data and research goals.

� 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

TaggedPDetailed articulatory data are a critical source of information about human speech production, its biomechanical

properties, and linguistic underpinnings. However, a perennial challenge has been access to realistic and useful artic-

ulatory data. Techniques that have been used to measure speech articulation (summarized in Table 1) include X-ray

microbeam (XRMB: Westbury et al., 1990), electropalatography (EPG: Hardcastle, 1972), electromagnetic articu-

lography (EMA: Perkell et al., 1992; Wrench, 2000) and ultrasound (Stone and Davis, 1995; Whalen et al., 2005).

Although some of these techniques are invasive, they are able to capture articulatory information at high sampling

rates to varying degrees. However, none of these modalities provide a complete view of all vocal tract articulators,

which is important for studying vocal tract posture.
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Table 1

Articulatory measurement techniques.

Characteristic XRMB EMA Ultrasound EPG RT-MRI

Order of typical sampling rate (Hz) 100 500 50�300 100 5 to > 100

Relative spatial resolution Low Low Medium High High

View of vocal tract Fleshpoints Fleshpoints Tongue Tongue�palate contact Full view

Supine position? No No No No Yes

Invasive? Yes Yes No Yes No

Example database

(with citation)

Wisconsin X-ray

microbeam database

(Westbury et al., 1990)

Edinburgh MOCHA

database

(Wrench, 2000)

Haskins HOCUS

(Whalen et al., 2005)

Edinburgh MOCHA

database

(Wrench, 2000)

USC MRI�TIMIT

database

(Narayanan et al., 2014)
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TaggedPMore recently, developments in real-time magnetic resonance imaging (henceforth, RT-MRI) have enabled

examination of shaping along the entirety of the vocal tract during speech production, providing a means for observ-

ing and quantifying the ‘choreography’ of the articulators, in space and time, including structural/morphological

characteristics of speakers in conjunction with their articulation dynamics and acoustics (Narayanan et al., 2004).

While RT-MRI typically has an intrinsically lower frame rate than the other modalities, recent advances in parallel

imaging and sparse reconstruction have helped to significantly improve the temporal resolution of acquired data

including multiplane imaging (Iltis et al., 2015; Fu et al., 2015; 2017; Lingala et al., 2016). Importantly, RT-MRI

offers a clear advantage over other methods with respect to patient safety, relative non-invasiveness of imaging, and

the ability to image in 3D or simultaneously in multiple arbitrary 2D planes. On the other hand, MRI is typically

more expensive and less accessible � especially for field studies � compared to other sensing modalities. Another

consideration in studies using RT-MRI is the effect of gravity due to the supine position subjects assume in order to

be scanned using MRI (Subtelny et al., 1972; Engwall, 2003). However, in an X-ray microbeam study of two Japa-

nese subjects, Tiede et al. (2000) concluded that while the effects of the supine posture were significant for sustained

vowel production, they were minimal for running speech production.

TaggedPData collected using RT-MRI can be used to inform important questions in linguistic theory, speech modeling

and clinical research. Many advances in RT-MRI spatial and temporal resolution have been driven by the need to

investigate phonetic and phonological phenomena, such as vowel nasalization in Portuguese (Teixeira et al., 2012)

and French (Carignan et al., 2015), liquid consonant behavior in English (Proctor and Walker, 2012) and Korean

(Lee et al., 2015), coarticulation in VCV sequences (Demolin et al., 2002), and characterization of click conso-

nants in African languages (Proctor et al., 2016). RT-MRI has also been used to investigate vocal tract shaping

during non-speech events, such as those observed during beatboxing (Proctor et al., 2013a) and singing (Burdumy,

2016). Such research is also important for automatic speech and speaker recognition technologies, as any speech

or speaker modeling procedure must reflect the structure of the underlying physical system in order to be effective

(Rose et al., 1996). For example, automatic speech recognition (ASR) can benefit from knowledge of the coordina-

tion of the vocal tract articulators and the resulting acoustics; this can help reduce apparent token-to-token vari-

ability, removing a confounding factor in general pattern recognition algorithms (Frankel and King, 2001;

Mcdermott and Nakamura, 2006; McGowan, 1994). In addition, speakers exhibit substantial differences in many

aspects of their individual vocal tract morphology, all of which have the potential to alter acoustic output or force

speakers to adjust their articulation in compensation. Incorporating such knowledge into speaker modeling could

likewise improve speaker recognition performance. Finally, RT-MRI also allows researchers to examine important

clinical questions regarding disordered vocal processes in patients, including speech and swallowing. Clinical uses

of RT-MRI include imaging patients who have undergone glossectomy (partial removal of the tongue) to treat

oral cancer (M�ady et al., 2003), and in patients with apraxia of speech (Hagedorn et al., 2014) or sleep apnea

(Drissi et al., 2011).

TaggedPRelatively rich RT-MRI datasets, such as the USC MRI-TIMIT database (Narayanan et al., 2014), allow research-

ers to study a wide range of the aforementioned linguistic, speech and clinical phenomena in a systematic manner.

However, datasets collected using RT-MRI also pose significant recording, processing and analysis challenges (Silva

and Teixeira, 2016). For instance, it is non-trivial to collect the amounts of data that are required for answering dif-

ferent linguistic and modeling questions in a statistically meaningful manner, due to the labor, cost and expertise

involved. This affects the reproducibility of the observations and analyses across different subjects and demographic

backgrounds, which in turn has implications for the inferences made using this data, both by humans and machine
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TaggedPalgorithms. In many applications, since we largely rely on experts (physicians, radiologists) to interpret and analyze

such imaging data (as with other human-centric medical datasets), there are generally no gold standard datasets or

annotations of the data, which means that there is no accepted standard benchmark for evaluating performance

of automated analysis algorithms. The large number of moving parts in the data collection chain from acquisi-

tion to reconstruction to analysis to interpretation also pose challenges to automation. Silva and Teixeira

(2016) identify key steps in this workflow, and address further considerations for quantifying and comparing

data across speakers.

1.1. A Taxonomy for RT-MRI analysis

TaggedPThis review paper describes the wide variety of RT-MRI analysis techniques used for speech research, and

presents a unified taxonomy within which these techniques can be understood and extended. The taxonomy, sche-

matically represented in Fig. 1, is organized according to the broad class of image processing used, type of output

information obtained, and auxiliary or prior information required for each method. Analysis techniques are also clas-

sified according to difficulty of implementing each method of processing, and the level of abstractness of the output

representation. Within such a taxonomy, we can broadly define four classes of image analysis techniques: those

based on (i) basis decomposition or matrix factorization techniques at the level of the raw or processed images, (ii)

pixel- or region-of-interest (ROI)-based, (iii) grid-based, and (iv) contour-based. The first class of techniques typi-

cally operates on the whole image and includes techniques such as principal components analysis (PCA) and convol-

utive nonnegative matrix factorization (cNMF) that operate on the original articulatory data to obtain relatively

abstract, spatio-temporal basis functions of articulatory movement (Ramanarayanan et al., 2013a; 2016) that have

been shown, in some cases, to be akin to linguistic gestures (Browman and Goldstein, 1995). The second class of

methods � ROI-based � require manual definition of specific regions of interest where the relative variation (or

covariation) of ensembles of pixels can be used to obtain insights into various linguistic and clinical questions of

interest, or provide intermediate features for further modeling (Lammert et al., 2010; Tilsen et al., 2016). The third

class of methods are grid-based in that they require the superimposition of an appropriate (typically semi-polar) ref-

erence coordinate system on the image, allowing extraction of vocal tract area functions by computing points of

intersection between gridlines and soft tissue (Maeda, 1979; Proctor et al., 2010b). While this is more complex to

implement relative to the previous methods, it also provides more easily interpretable lower-level features. The final
Fig. 1. A schematic overview of different RT-MRI analysis methods. The blue colored box indicates that basis decomposition techniques like

principal component analysis (PCA), factor analysis (FA), convolutive nonnegative matrix factorization (cNMF), etc. can be applied to both the

raw image as well as features obtained using all processing methods. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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TaggedPclass of analysis methods involve extraction of all tissue boundaries, including those that do not directly define the

geometry of the upper airway, but which are critically involved in speech production. These methods allow more

detailed specifications of anatomical structures to be used directly for analysis, or as intermediate features for model-

ing. Examples of such methods include image segmentation (which yield vocal tract air-tissue contour outlines) as

well as higher-level features that can be derived from these contours, such as vocal tract constriction variables or

geometric articulatory coordinates.

TaggedPThe rest of this paper expands on each of these different classes of analysis methods, and is organized as follows:

Sections 2�5 briefly describe the four aforementioned classes of processing methods, followed by a discussion of

issues of reproducibility and reliability with respect to RT-MRI analyses (Section 6). We then briefly highlight and

summarize some of key linguistic and speech science (Section 7) and clinical studies (Section 8) where such analysis

methods have been applied.
2. Basis decomposition or matrix factorization techniques

TaggedPBasis decomposition refers to a family of methods that factors a given data matrix (for instance, a single MR

image, or an entire MR image sequence where each column contains a vector representation of the raw image or

image features) or tensor (for instance, a video sequence) into a basis matrix consisting of a finite number of invari-

ant spatial and/or temporal patterns and an activation matrix that describes how weighted combinations of those pat-

ters can reconstruct the original data.1 These techniques allow extraction of the invariant aspects of data from the

different sources of variability contained within. Such techniques are versatile in that they can be applied to any vec-

tor representation of the RT-MRI data � ranging from the vectorized image itself represented by raw pixel intensi-

ties to vectorized contour outline representations. The principal components analysis (PCA) family of techniques

(Jolliffe, 2002), in particular, is a widely used technique that represents data as a weighted sum of orthogonal factors

that account for maximal variance in the data (i.e., each column of the basis matrix is orthogonal to the other col-

umns; see for example Maeda, 1990). PCA has been used to analyze patterns of vocal tract shaping across both spa-

tial (e.g. Yehia and Tiede, 1997) and temporal domains. Carignan et al. (2015), for example, applied principal

component analysis to cohorts of pixels in midsagittal images comparing the velum and tongue body articulation in

French nasal vowel production. Targeted image regions are modeled as sets of n pixel intensities (columns/variables)

for each of m images (rows/observations) in their experimental corpus, for each MR slice. Grayscale heatmaps can

then be used to interpret PCs in articulatory terms, with whiter regions corresponding to presence of soft tissue. Fac-

tor analysis, a related technique that does not require orthogonality of components among others, has also been used

to analyze tongue-shaping behavior (Harshman et al., 1977).

TaggedPOther methods such as temporal decomposition and convolutive non-negative matrix factorization (or cNMF)

have been successfully applied to time-varying articulatory data (both raw as well as processed features) to cap-

ture both spatial and temporal invariances. For instance, Jung et al. (1996) used weighted temporal decompositon

techniques, first proposed by Atal (1983), to derive gestural score-based representations (see Browman and Gold-

stein, 1995) directly from articulator movement records. More recently, Ramanarayanan et al. (2013b) applied a

cNMF technique with sparseness constraints to extract meaningful “primitive” representations of articulatory

movement, akin to the physical realization of linguistic gestures proposed by Articulatory Phonology theory

(Browman and Goldstein, 1995). This family of algorithms factors an M£N data matrix (the columns of which,

for example, can be formed by converting each I£ J MRI image of an input video sequence into a column vector

of shape M£ 1, where M¼ I � J) into a “basis tensor” that contains a fixed number of spatio-temporal patterns (or

primitives) and an “activation matrix” that captures the time instants when each of those spatio-temporal patterns

occurred in the data. Subsequent work has since expanded upon these results to obtain more mathematically-valid

and linguistically-interpretable primitives (see Ramanarayanan et al., 2016; Vaz et al., 2016, for graphical examples

of such primitives).
1 In linear algebra, a basis is a set of linearly independent vectors that, in a linear combination, can represent every vector in a given vector space.

Such a set of vectors can be collected together as columns of a matrix � a matrix so formed is called a basis matrix. More generally, this concept

can be extended from vectors to functions, i.e., a basis in a given function space would consist of a set of linearly independent basis functions that

can represent any function in that function space. For further details and mathematical treatments of basis decomposition techniques including uni-

fied views of different matrix factorization methods, see Strang (2006), Li and Ding (2006), Singh and Gordon (2008), Ding et al. (2010).
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3. Direct image analysis: looking at specific vocal tract regions of interest (ROIs)

TaggedPDirect image analysis methods analyze pixel intensity in a specific region of the image. Most methods of this type

involve regions-of-interest (ROIs). ROIs are often defined with the goal of identifying image pixels in which spatio-

temporal variation in pixel intensity provides information regarding a relevant articulatory feature (e.g. jaw eleva-

tion) or task variable (e.g. lip aperture). ROIs can be as small as a single pixel, although it is often desirable to define

ROIs as multi-pixel regions. An advantage of using direct image analysis methods is that they are relatively simple

to implement and interpret. For example, Niebergall et al. (2013) show how articulatory dynamics and coarticulation

are visible in spatiotemporal profiles of pixel intensity from single-pixel-wide lines along which lingual and labial

articulators move. A different example comes from Freitas et al. (2016), who use the ratio of the mean and standard

deviation of a velum ROI to assess signal artifacts. A number of studies have examined velum control in nasal vow-

els and consonants using ROI-based methods (cf. Teixeira et al., 2012; Carignan et al., 2013; Byrd and Saltzman,

2003).

3.1. ROI selection considerations

TaggedPROIs usually define a static, contiguous region whose boundaries are determined relative to anatomical structures

and/or articulator positions observed across a sequence of image frames. Manual ROI definition is normally guided

by knowledge of vocal tract anatomy, in order to ensure that extracted features are useful for analyses. The robust-

ness of ROI-based features depends on the characteristics of the structures which are used to define ROIs, which in

turn depends on the specific articulators/task variables for which an ROI is defined. Below we discuss a couple of

examples.

TaggedPAn ROI defined to capture information regarding the tongue root (TR, see the second image panel of Fig. 1)

should be delimited by the posterior pharyngeal wall. The posterior pharyngeal wall is fairly easy to identify because

it is comprised of soft tissue, and it is relatively static across frames during speech. However, speakers can produce

pharyngeal constriction gestures that change the location of the pharyngeal wall. Determining the anterior boundary

of a TR ROI is somewhat more problematic. This boundary should be anterior enough such that the tongue root sur-

face always remains in the ROI, but a boundary that is too anterior will reduce the dynamic range of features

extracted from the ROI and may overlap with other ROIs, inducing a correlation (which is often undesirable). The

superior and inferior boundaries of a TR ROI should generally avoid capturing velar and epiglottal movement.

TaggedPMany of the same issues arise when defining ROIs to capture information regarding the lips. The inferior bound-

ary of a lower lip (LL) ROI (cf. Fig. 1) should be sufficiently inferior so that the superior surface of the lower lip can-

not move outside of the boundary. A problematic decision regarding the superior LL-ROI boundary and inferior

upper lip (UL)-ROI boundary must be made in order to define separate LL and UL ROIs. This is problematic

because the spatial location of labial contact can vary according to many speech-related factors. Hence more com-

plex grid/edge-based methods are preferable. TT and TB ROIs can be challenging to define because the relevant

articulators are constrained by hard-tissue structures: the anterior palate and dentition. Because these regions of the

vocal tract do not show up very clearly in most imaging protocols, some interpolation and extrapolation might be

necessary to approximate their locations. Alternatively, additional image processing can be used to improve SNR in

key regions: Scott et al. (2013) use adaptive averaging to better resolve the soft palate.

3.2. ROI pixel intensity

TaggedPOne class of measures derived from ROIs involves aggregate pixel intensity. The sum (or alternatively, mean or

median) intensity of pixels in an ROI reflects the amount of tissue in the region. Variations in the pixel intensity in a

region over time thus can be used to analyze articulator dynamics (see e.g. Bresch and Narayanan, 2009; Lammert

et al., 2010; Shosted et al., 2012; Silva et al., 2013; Tilsen et al., 2016). For example, as the tongue root (TR) is

retracted for a low, back vowel, the pixel intensity will increase in the TR ROI. The usefulness of such features

depends on the extent to which the ROI isolates the relevant articulator movement.

TaggedPBeyond reliance on manual image labeling, there are several drawbacks to features derived from ROI pixel inten-

sity. First, the intensity values obtained from these methods are not measures of articulator positions, even if they

can indirectly represent those positions. Moreover, the intensity of a single pixel or the average over a group of
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TaggedPpixels is quite difficult to interpret in any physical unit due to complexities in the relation between tissue density,

MRI signal levels, and reconstructed image values. Second, pixel intensity features do not reflect the direction of tis-

sue motion. For example, if the lower lip exhibits both vertical and horizontal components of motion through the LL

ROI, these cannot be distinguished.

3.3. ROI intensity centroid

TaggedPAnother method for extracting features from an ROI involves calculating the 2-dimensional intensity centroid in

an ROI. The intensity centroid (IC) is analogous to a center of mass � simply picture the ROI as a 3-dimensional

object whose elevation at each pixel coordinate corresponds to its intensity: the IC is where the object would balance

on a fulcrum. Technically, the IC is the intensity-weighted average value of the horizontal and vertical coordinates in

an ROI (Tilsen et al., 2016). The IC thus provides a measure of where intensity within an ROI is distributed. For

example, when the LL is protruded, this can be distinguished from LL retraction, even when there is no aggregate

change in pixel intensity. The ROI-IC has the advantage of providing information regarding movement direction,

and if desired a principal components analysis can be conducted to determine the main axis of motion in an ROI.

TaggedPWhile the ROI-IC also provides a feature with physically interpretable units � pixel coordinates � these do not

index the position of any articulator or tissue boundary. The IC also has the disadvantage of being highly sensitive to

ROI location: if the relevant articulator leaves the ROI, the centroid measure can change discontinuously.

3.4. Inter-ROI correlation

TaggedPRelations between ROIs are also informative. Because pixel intensities from distinct regions of interest can be

intrinsically temporally-aligned, correlations between regions provide information regarding articulatory activity.

Multiple-ROI analysis may therefore be suitable for investigating coordination relationships between articulators

(Proctor et al., 2010a). Teixeira et al. (2012), for example, examine velic coordination in European Portugese nasal

vowel production using two ROIs located at the lips and nasopharynx. In the case of repetitive speech tasks, these

data can then be treated using standard methods for comparing signal similarity and examining inter-signal timing,

such as correlation analysis. This has proven to be a useful approach for identifying speech errors (Lammert et al.,

2011), even when covert (not apparent in the acoustic signal), as demonstrated in an analysis of apraxic speech

(Hagedorn et al., 2017).

3.5. Disadvantages of direct image analysis

TaggedPDirect image analysis methods have the disadvantage of relying on manual image labeling or pixel selection.

ROIs are typically manually defined from image inspection or semi-automatically generated from manually identi-

fied anatomical landmarks. Because of this, the replicability of manual ROI-based methods may be influenced by

inter-labeler consistency. ROI-based methods are also potentially problematic for articulatory feature extraction.

The extracted features are necessarily indirect representations of articulator kinematics/vocal tract geometry: ROI-

based features are expressed in units of pixel intensity and pixel location, rather than units of articulator position or

constriction size. We note also that co-registration of image frames is a prerequisite for automating ROI analyses

across a sequence of frames. This serves to maintain a constant anatomical location of the ROI. An affine transfor-

mation is usually applied to rotate and translate each frame, in order to compensate for head movement in the imag-

ing plane. Off-sagittal plane head movement cannot be compensated for by the co-registration process and therefore

introduced noise in direct image analyses.

4. Grid based analysis

TaggedPAnalysis of the vocal tract with reference to a superimposed grid has a long tradition in speech science. The tech-

nique was originally developed to analyze X-ray data (Heinz and Stevens, 1964; Ladefoged et al., 1971; Mermel-

stein, 1973), and later adapted for use in pioneering structural MRI studies of speech production (Baer et al., 1991;

Greenwood et al., 1992; Demolin et al., 2000). The use of grid-based analysis has a dual motivation: it provides a

straightforward method of capturing vocal tract shape in a complex image, and doing so in a sparse parametric form
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TaggedPthat can be reconciled with popular models of speech production and phonological representation. These techniques

have primarily been used in analysis of static MR or X-ray images, and are applicable to RT-MRI when applied to

each frame of an image sequence.

4.1. Analysis grid geometry

TaggedPAnalysis begins with construction of a coordinate system to be superimposed on images of the vocal tract. Rect-

angular grids have been used to analyze articulation within a Cartesian coordinate space (Stone et al., 2001), but

midsagittal articulatory analysis most frequently uses a polar coordinate system. A semipolar grid constructed

around an origin located near the center of the resting tongue body will follow the curve of the vocal tract from the

mid-pharynx to the alveolar ridge. Another advantage of this method is that radial gridlines remain roughly normal

to the tract midline throughout the midsagittal region of interest (Fig. 2), allowing for consistent estimation of vocal

tract aperture throughout the oral cavity (Greenwood et al., 1992; Demolin et al., 2000).

TaggedPThe analysis grid is typically located and defined with respect to key anatomical landmarks, including the poste-

rior pharyngeal wall, hyoid, highest point of the hard palate, upper teeth and lips, to ensure optimal coverage of the

speech articulators and resonant cavities (€Ohman, 1967; Mermelstein, 1973). A single semi-polar analysis grid can

be used to cover the entire vocal tract (e.g. Zhang et al., 2016), or additional geometries can be introduced to follow

the morphology of the tract more closely. The lower pharynx can be tracked with a set of horizontal lines extending

from the end of the semipolar grid to the glottis, or into the trachea, and the anterior part the tract to the alveolar ridge

may be covered with a series of vertical (Mermelstein, 1973; Engwall and Badin, 1999) or tract-normal gridlines

(Beautemps et al., 1995), or a second semi-polar grid tracking the change in tract curvature (Proctor et al., 2010b).

TaggedPThe density of the analysis grid will have important implications for speech MRI analysis, as gridline spacing will

determine how sparsely tissue boundaries will be sampled. In high resolution images, gridlines may be spaced at a

fixed angle or distance (e.g. €Ohman, 1967 specifies 5˚ and 5 mm), but uniform spacing may not always provide ade-

quate coverage of complex anatomy such as the epiglottis or the uvula, especially if the subject’s head and/or the

image FOV are small. Closely-spaced gridlines may help resolve anatomical detail and improve tracking of rapid
Fig. 2. Composite semi-polar analysis grid, defined with respect to glottal, lingual and palatal landmarks, superimposed on a midsagittal MR

image of a male vocal tract (Proctor et al., 2010b).
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TaggedParticulator movement, for example around the alveolar ridge, or where variability in signal quality demands higher

spatial sampling, such as the velum. Variable gridline spacing � sometimes dynamically adjusted (Engwall and

Badin, 1999) � has been used in different regions of the tract to accommodate these factors.

TaggedPAdditional factors must be considered when designing a grid for analysis of RT-MRI data, as opposed to static

structural MRI. If a grid is defined with respect to anatomical structures which move during speech, either the grid

must be shifted between image frames, or a translation must be applied when comparing vocal tract configuration

across frames, to correct for the movement relative to the grid (Proctor et al., 2010b). If the subject’s head is immobi-

lized during image acquisition, the passive structures of the upper oral tract and rear pharyngeal wall will remain

fixed across frames, but motion of the larynx and lips will need to be accommodated.

4.2. Locating anatomical structures

TaggedPOnce a grid has been superimposed on an MR image, anatomical structures are located by finding the intersec-

tions between each gridline and tissues boundaries of interest � typically the tongue, lips, velum, and passive struc-

tures of the midsagittal oral cavity. Tissue boundaries can be manually identified on each gridline (Greenwood et al.,

1992), but are more commonly extracted automatically or semi-automatically.

TaggedPAlgorithms can detect air-tissue transitions by locating abrupt changes in pixel intensity along each gridline (e.g.

Engwall and Badin, 1999; Kim et al., 2014). The analysis grid guides the algorithm by defining limits on the search

space, typically bounded longitudinally by the glottis and the most anterior point of the lips; a search algorithm may

assume that each gridline between these extremities will intersect exactly two tissue boundaries defining the inner

and outer limits of the midsagittal vocal tract. Intensity profiles calculated along tract-normal gridlines may contain

multiple local extrema, and the actual tract boundaries do not always align with the steepest intensity slopes, so accu-

rate determination of tract geometry is not a trivial task. Zhang et al. (2016) use combined multi-directional Sobel

operators to more robustly identify candidate tissue boundary points in noisy MR images.

TaggedPA computationally efficient method of locating tract outlines is to construct a graph through the set of candidate

boundary nodes (Fig. 3) in which edges are weighted according to other geometric constraints such as distance and

curvature, and/or with reference to tissue boundary locations on temporally-adjacent image frames (Zhang et al.,

2016). Two optimal paths from glottis to lips can then be calculated, corresponding to inner (tongue) and outer (pal-

ate and rear pharyngeal wall) vocal tract boundaries. Tissue boundary estimates are constrained by multiple configu-

rable search parameters, and can be calculated using Dijkstra’s algorithm (Proctor et al., 2010b), the Viterbi
Fig. 3. Use of a graph to compute vocal tract boundary locations. Nodes represent candidate points (locally maximal changes in pixel intensity) on

tissue boundaries. Terminal nodes are defined at glottal and mid-labial points. Tract outlines computed from optimal paths between terminal nodes

along edges weighted by image features and geometric constraints.
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TaggedPalgorithm (Kim et al., 2014; Zhang et al., 2016) or other optimization techniques. These approaches typically require

some prior knowledge of the anatomical configuration of the tract, which is used to further constrain the search

space.

TaggedPAlthough vocal tract analysis is prototypically performed in the midsagittal plane, similar techniques can be used

to analyze tract geometry in MRI data acquired from coronal, axial, and oblique imaging planes (Kim et al., 2012).

An advantage of grid-based approaches is that the coordinate system imposed on one set of images can guide acqui-

sition from intersecting planes. For example, coronal cross sectional images can be acquired through the anterior

part of the tract, and axial images from the pharynx, at regularly spaced planes corresponding to the gridlines on the

midsagittal analysis grid (Badin et al., 1998; Engwall and Badin, 1999), allowing for three-dimensional vocal tract

models to be constructed.
4.3. Extracting speech models

TaggedPGrid-based analysis of speech MRI data has proven popular because the information extracted using this method

of analysis is highly interpretable in phonetic terms, and can directly inform standard models of speech production.

Midsagittal aperture functions can be computed directly from tissue boundary intersection points on each gridline,

from which area functions can be derived (Mermelstein, 1973; Beautemps et al., 1995; Engwall and Badin, 1999).

TaggedPGrid-based analysis has also proven especially useful in real-time MRI for examining articulation in specific

regions of the vocal tract. Because the analysis grid defines a consistent coordinate space, information can be reliably

extracted from identical regions of the tract in image sequences to examine changes in constriction over time (Demo-

lin et al., 2000; Proctor and Walker, 2012).
5. Image segmentation and higher-level feature extraction

TaggedPWhile direct pixel analysis or grid-based analysis provide a robust and convenient analysis, intuitively meaningful

contour-based representations may also be required, depending on the application. Examples include outlines or con-

tours that delineate the tongue and vocal tract structures. In the case of XRMB or EMA, contours may be obtained by

fitting a smooth spline through all pellet points. However, in the case of MRI and ultrasound, more involved image

processing is required to segment air-tissue boundaries. See Fig. 4 for graphical examples of such features.

5.1. Unsupervised image segmentation

TaggedPUnsupervised region segmentation of the upper airway, jaw and supraglottal articulators is a viable approach

given sufficiently large datasets, and may be used for processing long sequences of MR images. Sampaio and Jack-

owski (2017) deploy level set functions (Li et al., 2010) to segment anatomical structures in midsagittal sequences

of 120 frames acquired at 10 f.p.s., using an iterative technique robust to the absence of one or more articulators. A

robust tool for segmentation in image Fourier space (also called k-space) has been developed based on an algorithm

that uses an anatomically-informed object model, returning a set of tissue boundaries for each frame of interest

(Bresch and Narayanan, 2009). This technique allows for quantification of articulator movement and vocal tract

aperture in the midsagittal plane (see first panel of Fig. 4). In recent years, there has been increasing research on

automated unsupervised and semi-supervised vocal tract image segmentation2 that leverages a wide range of

machine learning and computer vision tools, such as active shape models (ASM: Cootes et al., 1995), active appear-

ance models (AAM: Cootes et al., 2001), and mesh deformation and registration methods (see for example Silva and

Teixeira, 2015; Hewer et al., 2014; Harandi et al., 2015; Labrunie et al., 2016; Eryildirim and Berger, 2011). More

robust segmentation may be achieved through combination of these methods. Asadiabadi and Erzin (2017), for

example, combine active shape and active contour models (ACM, or ‘snakes’: Kass et al., 1988) to reduce boundary

tracking errors when articulator occlusion occurs. Raeesy et al. (2013) use recursive boundary subdivision (RBS) to

generate an initial training dataset that automatically finds landmarks in the images, and then deploy oriented active

shape models (OASM) to locate tissue boundaries.
2 Note that while there is also work on expert manual segmentation, we primarily focus this review on automatic analysis methods.



Fig. 4. Examples of meaningful features that can be computed from RT-MRI data. (a) Contour outlines (Bresch and Narayanan, 2009). (b) Mean-

ingful cross-distances can be computed that segment the vocal tract into areas A1�A4 (Ramanarayanan et al., 2010). (c) Cross-distances in more

detail (lip aperture (LA), velic aperture (VEL), and constrictions of the tongue tip (TTCD), tongue dorsum (TDCD) and tongue root (TRCD). (d)

Articulatory posture variables � jaw angle (JA), tongue centroid (TC) and length (TL), and upper and lower lip centroids (ULC and LLC).
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5.2. Higher-level features: constriction cariables and articulator positions

TaggedPOnce vocal tract contours are obtained, we can further compute other meaningful representations � such as area

functions (introduced earlier), cross-distances, and other postural variables (Mermelstein, 1973; Maeda, 1990). A

pervasive problem with analyzing parametric vocal tract data extracted from MRI of different speakers is that of

cross-speaker alignment. Whichever technique has been used to quantify tract configuration, differences in speaker

anatomy make it difficult to compare data across speakers. In the case of grid-based analyses, for example, different

numbers of gridlines might be required for different speakers, and gridlines with the same index might intersect dif-

ferent vocal tracts at different places of articulation. Ramanarayanan et al. (2013a) proposed a method to automati-

cally derive cross-distances that are computed at points where constrictions are made in the vocal tract during

normal speech production, such as the alveolar ridge for coronal stop consonants, or the lips for labial stops. Hence

they are conducive to meaningful comparison across subjects. In addition, other meaningful postural features such

as the angle of the jaw or the centroid of the tongue can be computed from segmented MRI data.
6. Reproducibility of RT-MRI data

TaggedPWhen acquiring and analyzing RT-MRI speech data, several factors contribute variability to the final result, in

both wanted and unwanted ways. Wanted variability comes, for example, from intra-speaker variations and emo-

tional state, in cases where these effects are under study. Unwanted variability may be caused by variations in subject

positioning, scan plane positioning and manual steps in post-processing and evaluation. Unwanted data variability

may be negligible in small single-center studies (i.e. a study performed at a single site by one research group alone)

and in cross-sectional studies where all the data is collected and analyzed by a single researcher at one point in time.

However, it is critical to understand and mitigate unwanted sources of variability to tackle important questions with

high scientific impact such as (a) long-term speech development and rehabilitation, (b) clinical applications where

the analysis result may influence diagnosis and treatment, and (c) to conduct larger studies involving several research

sites separated geographically.

TaggedPThe sources of variability can be classified into (1) MRI acquisition technology variability, including scanner

parameters, noise and image reconstruction, (2) MRI operator variability, such as subject positioning and scan plane

alignment, (3) image analysis including subjective differences in manual delineation and initialization of automatic

methods, and (4) physiologic variation such as short-term speaker variability (including repetition-to-repetition) and

longer-term changes in speech production (e.g., due to emotional state, development, and aging) (T€oger et al.,

2016). In the above, groups 1�3 generally introduce unwanted variability, which may confound comparisons or

even mask important information in the collected data. In contrast, the variability introduced in group 4 may be

highly desired for many research aims. Therefore, all steps in the acquisition, processing and analysis of data should

be optimized to minimize the influence of groups 1�3, and preserve the physiological variability in group 4 in the

resulting data.
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TaggedPIn the post-processing context of this review, analysis methods should be designed to not introduce bias or vari-

ability of its own. Furthermore, analysis methods should be robust to human error, so that data produced at different

points in time or at different research sites can be compared without introducing confounding differences.

TaggedPSeveral practical strategies that are useful to quantify and reduce unwanted variability can be borrowed from

medical imaging research. In medical imaging, unwanted variability has long been in the spotlight to ensure accurate

and reliable diagnosis and treatment decisions for patients. Recently, methods and terminology have been standard-

ized by the Quantitative Imaging Biomarker Alliance (QIBA), organized by the Radiological Society of North

America (RSNA) (Kessler et al., 2015). An important and quite simple test of the robustness of a post-processing

method is to let two researchers evaluate data from a subset of subjects independently, to determine the interobserver

variability. A high interobserver variability suggests that data evaluation is ambiguous and must be specified more

thoroughly, while a low variability reinforces the objectivity of the data. Further, more extensive tests include

repeatability, where the same MRI scan is performed twice on the same day under the same conditions, also called a

test-retest study, and reproducibility, where the operator, measuring equipment and spatial location of the measure-

ment are changed.

TaggedPIn speech and upper airway research using static MRI, a limited number of studies have determined interobserver

variability (Arens et al., 2001; Chi et al., 2011; Fitch and Giedd, 1999; Vorperian et al., 2005; Echternach et al.,

2016) and repeatability (Welch et al., 2002) of static upper airway measures. To the best of our knowledge, only a

single study has investigated the test-retest repeatability of RT-MRI biomarkers (T€oger et al., 2016). This shows an
open opportunity to further strengthen the RT-MRI speech analysis community and prepare the field for larger

speech studies and scientific breakthroughs, e.g., through large multi-center population studies, long-term longitudi-

nal speech development studies and clinical applications.

7. Linguistic understanding and speech technology applications

TaggedPThe analysis techniques reviewed in Sections 2�6 have been used to investigate a wide range of linguistic and

speech phenomena. RT-MRI has transformed laboratory phonology by providing new levels of detail about the

global configuration of the vocal tract and the way it is reshaped over time. Because many advances in real-time

MRI of the vocal tract have been driven by investigations into phonological phenomena and language-specific stud-

ies of speech production, methods for analyzing these data are often intrinsically phonetically-motivated. A repre-

sentative survey of techniques used to analyze RT-MRI data in linguistic studies is provided in Table 2.

7.1. Study of linguistic phenomena

TaggedPGrid-based analysis of MRI data has often been used in studies focusing on specific aspects of speech production,

where articulation can be intuitively compared across speakers, tokens, and points in time, in target regions of the

vocal tract defined by a range of grid lines; for example, to characterize pharyngeal articulation in Arabic emphatic

consonant production (Israel et al., 2012). Grid-based analysis is also a popular and straightforward method for

tracking articulator movement (e.g. of the larynx, Demolin et al., 2002; or velum, Teixeira et al., 2012), and quanti-

fying changes in vocal tract aperture along a targeted gridline (Demolin et al., 2000; Carignan et al., 2015). In an

innovative multi-modal study of speech imitation (combining structural vocal tract imaging with fRMI of the brain),

Carey et al. (2017) use grid-based analysis to quantify labial protrusion during a vowel production task.

TaggedPOther types of phonetic studies require detailed information about global tongue shaping, in which case tissue

segmentation analysis may be a more appropriate way to process RT-MRI data. Midsagittal lingual outlines have

been used to study details of lingual and velic posture in French vowels (Delvaux et al., 2002), and articulation of

multi-gestural liquid consonants in English (Proctor and Walker, 2012) and Tamil (Proctor et al., 2009). Midsagittal

analysis of lingual-palatal contact patterns extracted from high temporal resolution MRI sequences have been used

to examine details of click consonant production in African languages (Proctor et al., 2016).

TaggedPRegion-of-interest analysis is a useful method for investigating gestural timing relationships and patterns of con-

striction formation and release in specific regions of the vocal tract; it has been used to characterize Korean liquid

consonant production (Lee et al., 2015), and Italian singleton/geminate contrasts (Hagedorn et al., 2011). This

approach may also be more suitable when, due to differences in vocal tract morphology, tissue outlines or grid-based

analysis do not allow for easy comparison of tokens produced by different speakers. ROI analysis has proven to be a



Table 2

Linguistic understanding and speech technology applications.

Linguistic Phenomenon Language Class Methods Representations Analyses Reference

Pausing behavior in spontaneous

speech

English Basis decomp Intensity

gradient

Midsag boundary difference Gradient frame energy Ramanarayanan et al. (2009)

Identifying articulatory primitives English Basis decomp cNMF Midsag basis vectors Mean constrictions Ramanarayanan et al. (2011)

Articulatory settings for speech English Basis decomp ACMs Midsag tract area descriptors VTADs Ramanarayanan et al. (2013a)

Articulatory settings for speech English Basis decomp LW regression Cross-section, jacobians Tract variables Ramanarayanan et al. (2014)

Phonetic class recognition English Basis decomp PSPI Optimal regions,

PSPI matrices

Max. pixel information Prasad and Ghosh (2016)

Coarticulation, artic. compensation French Direct Midsag images Qualitative Demolin et al. (1997)

Velic coordination in nasalisation French Direct Midsag images Inter-frame timing Proctor et al. (2013b)

Patterns of vowel reduction English Direct Mean midsag images Mean image geometry Proctor et al. (2015)

Geminate consonant production Italian Direct ROI Constriction kinematics Tissue velocities Hagedorn et al. (2011)

Liquid consonant allophony Korean Direct ROI Constriction kinematics Intensity ratios Lee et al. (2015)

Nasal vowel, liquid articulation Portuguese Direct ROI Constriction kinematics, CSA Intensity ratios Teixeira et al. (2012)

Nasal vowel production French Direct ROI, PCA Midsag PC heatmaps, CSA PC loadings, apertures Carignan et al. (2015)

Pharyngealization and emphasis Arabic Direct ROI, PCA Constriction kinematics, PCs Aperture timeseries Shosted et al. (2012)

Vowel and consonant production French Direct, grid ROI Midsag aperture, location Tissue kinematics Demolin et al. (2002)

Articulation of nasal vs. oral vowels French Direct, grid Midsag tissue boundaries Qualitative Demolin et al. (2002)

Articulation of nasal vs. oral vowels Portuguese Direct, contour ROI, Region

growing

Tissue boundaries Tissue kinematics Silva et al. (2013)

Vowel & consonant production German Direct, contour ROI Midsag & coronal image Aperture kinematics Niebergall et al. (2013)

Articulatory coordination in vowels French Grid Midsag area functions Aperture kinematics Demolin et al. (2000)

Liquid consonant production Tamil Grid Midsag aperture functions Grid-based aperture Proctor et al. (2009)

Emphatic consonant articulation Arabic Grid Midsag tissue boundaries Grid-based aperture Israel et al. (2012)

Liquid-vowel coarticulation English Grid Midsag tissue boundaries Qualitative Proctor and Walker (2012)

Click consonant production Nama Grid Midsag tissue boundaries Qualitative Proctor et al. (2016)

Fricative production Mandarin Grid Midsag & coronal boundaries Qualitative Proctor et al. (2012)

Tongue shaping in liquid consonants English Grid Midsag tissue boundaries Lingual curvature Smith (2014)

Lip rounding in imitative vowel prod. English Grid Midsag tissue boundaries Labial protrusion Carey et al. (2017)

Articulation of nasal vs. oral vowels Portuguese Contour AAMs Midsag tissue boundaries Artic. feature comparison Silva and Teixeira (2015)

Articulation of nasal vs. oral vowels Portuguese Contour AAMs Midsag tissue boundaries Artic. feature comparison Silva and Teixeira (2016)

Syllable structure and nasalization English Contour ACMs Midsag tissue boundaries Aperture kinematics Byrd et al. (2009)

Vowel & consonant production Swedish Contour Threshold,

spline

Midsag tissue boundaries Tract variables Engwall (2004)
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TaggedPpopular method in studies of nasalization, where the state of the velum, whose physiology varies considerably across

individuals, can nevertheless be robustly tracked by monitoring the intensity of a cohort of pixels located in the naso-

pharynx (Teixeira et al., 2012; Carignan et al., 2015).

7.2. Automatic speech recognition

TaggedPThere have been several production-oriented approaches to automatic speech recognition using both direct and

estimated data as well as using recognition models developed based on speech production knowledge (Rose et al.,

1996; Deng et al., 1997; Frankel and King, 2001; Mcdermott and Nakamura, 2006; Ramanarayanan et al., 2012).

For example, Frankel and King (2001) showed improvement in speech recognition accuracy by combining acoustic

and articulatory features from a talker. However, it is not practical to assume the availability of direct articulatory

measurements from a talker in real-world speech recognition scenarios. To address this challenge, a number of tech-

niques have been proposed (Deng et al., 1997; Lee et al., 2003; Ma and Deng, 2004) where, instead of relying on fea-

tures from direct articulatory measurements, abstracted articulatory knowledge is incorporated in designing models

(e.g., Dynamic Bayesian Networks (DBNs), Hidden Markov Models (HMMs)) which can be gainfully used for auto-

matic speech recognition. A summary of such techniques can be found in Mcdermott and Nakamura (2006). Deng

(1998) proposed an integrated Bayesian framework for ASR that consists of a hard-wired lexical compilation/repre-

sentation component (which attempts to generalize ideas of feature overlap proposed by phonological theories so

that the acoustic space can be modeled with fewer atomic speech units) as well as a stochastic acoustic mapping

component. Multi-steam architectures (Metze and Waibel, 2002) have been also proposed as an alternative approach

where linguistically derived articulatory (or more generally, phonetic) features are estimated from the acoustic

speech signal, typically using deep neural networks (DNNs), and then used to either replace or augment acoustic

observations in an existing HMM based speech recognition system. More recently, Ghosh and Narayanan (2011a)
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TaggedPhave used estimated articulatory features obtained through subject-independent acoustic-to-articulatory inversion

(AAI) to address the challenge of unavailability of direct speech production data during speech recognition. While

these techniques have been primarily applied to EMA or X-ray data, they can in principle be extended to data

obtained using RT-MRI.

7.3. Speaker morphology and recognition

TaggedPUnderstanding the interplay of vocal tract structure, articulation and acoustics has technological applications for

automatic speaker recognition. Vocal tract length normalization is one example of morphological knowledge that

has already provided performance benefits to automatic speech and speaker recognition (Eide and Gish, 1996; Lee

and Rose, 1998; Welling et al., 2002). Possibilities exist for providing normalization of the acoustic signal for other

structural differences that impact a variety of phonemes (Lammert et al., 2013b). An essential component of this nor-

malization, in terms of making if practically useful, is to accurately predict morphological characteristics of a

speaker, such as vocal tract length (Lammert and Narayanan, 2015), among others, directly from the acoustic signal

(i.e., morphological inversion). Predictions of this kind may subsequently lead to applications in speaker recognition.

These features will be unique to an individual speaker, making them ideal for biometric applications.

TaggedPLi et al. (2016) recently proposed a practical feature-level and score-level fusion approach by combining acoustic

and estimated articulatory information for both text independent and text dependent speaker verification. They dem-

onstrated that the articulatory constraints introduced by inverted articulatory features help to reject wrong password

trials and improve the performance after score level fusion, achieving more than 15% relative equal error rate reduc-

tion for speaker verification tasks.

7.4. Speech synthesis

TaggedPThere is a large body of work in the literature on leveraging articulatory data and representations for speech syn-

thesis applications. See Kr€oger and Birkholz (2009) for a nice overview of different articulatory synthesis models �
categorized as either vocal-tract models, acoustic models, glottal models or noise-source models. Recent advances

in such modeling are informed by phonological theory (Kr€oger and Birkholz, 2007), real articulatory data such as

from MRI (Birkholz and Kr€oger, 2006), and the understanding of coarticulation phenomena (Birkholz, 2013). Fur-

thermore, many synthesis models that are not directly articulatory in nature have also successfully leveraged

machine learning techniques such as Gaussian Mixture Models (GMMs) or Deep Neural Networks (DNNs) to incor-

porate articulatory information into the synthesis process (see for example Rahim et al., 1993; Toda et al., 2004;

Ling et al., 2009; 2013).

7.5. Modeling articulatory dynamics and speech motor control

TaggedPSpeech production data can facilitate understanding of forward (Lammert et al., 2013a; Ramanarayanan et al.,

2014) and inverse models (Ghosh and Narayanan, 2011b) of the vocal tract, and build generative models of vocal

tract shape dynamics (Bresch et al., 2010). In the latter, the authors investigated the application of statistical graphi-

cal models that can capture the spatio-temporal dependencies between various articulators in a data-driven manner.

This study indicates that if we combine (a) an explicit multistream transcription with (b) appropriate techniques for

extracting articulatory time-functions along with (c) the appropriate statistical models, we are well-positioned to

derive phonological information directly from articulatory data. In related work, Katsamanis et al. (2011) proposed a

modeling framework to validate different articulatory representations using articulatory recognition, which affords

an understanding of the usefulness of a given representation in analyzing speech articulation.

TaggedPThe availability of articulation data such as from RT-MRI offers new scientific inquiry possibilities. Consider the

case of speech motor control. One popular theory of motor control is the inverse dynamics model, i.e., in order to

generate and control complex behaviors, the brain needs to explicitly solve systems of coupled equations. Mussa-

Ivaldi et al. (1999) and Hart and Giszter (2010) instead argue for a less computationally complex viewpoint wherein

the central nervous system uses a set of ‘primitives’ to “solve” the inverse dynamics problem. Articulatory move-

ment primitives may be defined as a dictionary or template set of articulatory movement patterns in space and time,

weighted combinations of the elements of which can be used to represent the complete set of coordinated spatio-
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TaggedPtemporal movements of vocal tract articulators required for speech production. Ramanarayanan et al. (2011) recently

proposed an algorithm to automatically extract such primitives from speech articulation data. Subsequent work has

since expanded upon these results to obtain more mathematically-valid and linguistically-interpretable primitives

(Ramanarayanan et al., 2016; Vaz et al., 2016). Consider further the case of coarticulation in speech, where the posi-

tion of an articulator/element may be affected by the previous and following target (Ostry et al., 1996). Using the

idea of motor primitives enables exploration of how the choice, ordering and timing of a given movement element

within a well-rehearsed sequence can be modified through interaction with its neighboring elements (coarticulation)

(Sosnik et al., 2004).

8. Clinical applications

TaggedPSpeech RT-MRI provides a unique window into upper airway function that is potentially useful in a variety of

clinical applications. The vast majority of clinical MRI procedures are of static tissue (e.g. brain, spine, joints) or of

periodic motion (e.g. cardiac motion or pulsatile blood flow). With recent developments in RT-MRI, it is also possi-

ble to study non-periodic processes such as speech, swallowing and velopharyngeal function, which will severely

restrict quality of life when dysfunctional. While swallowing is not strictly a speech-related function, swallowing

depends on the same anatomical structures and physiological functions as speech, and can be imaged and analyzed

using similar methods, and it is therefore included in this review in the hopes that the two research fields can benefit

from each other. Table 3 summarizes a literature review of current clinical applications of RT-MRI in the fields of

surgery, swallowing function, velopharyngeal insufficiency (VPI) and speech disorders. Selected studies from each

field are discussed in more detail below.

TaggedPIn advanced cases of tongue cancer, parts of the tongue must often be surgically removed in a procedure called

glossectomy. Fig. 5 shows the RT-MRI data of a patient after glossectomy. An animated version with simultaneously

recorded audio can be found in the Supplemental Files (online). The reduced volume of the tongue is evident, as are

the altered articulatory patterns compared to healthy control subjects. Glossectomy will inevitably impact the

dynamics of speech production, as demonstrated in a study of five advanced tongue cancer patients post-glossectomy

by Hagedorn et al. (2014). Vowel frequency analysis (F1 and F2) and qualitative assessment by observers showed

that speech production was significantly altered post-glossectomy. In this study, ROI-based analysis (see Section 3)

was used to study constriction events during various speech tasks. Compensatory mechanisms in the post-glossec-

tomy patients included the use of labial stops instead of coronal stops and laterals, and fricatives being produced

using a constriction between the tongue dorsum and palate instead of at the alveolar ridge. This study showed that

RT-MRI can capture altered speech dynamics in patients post-surgery. Future uses of RT-MRI in glossectomy

patients may lead to better understanding of the speech defects incurred by different surgical strategies. Patients may

be imaged before and after surgery to specifically tailor speech therapy programs to optimize recovery of speech

intelligibility.

TaggedPSwallowing function is of great clinical importance, especially in stroke patients. The current standard of care is

videofluoroscopy (VF), which provides high spatial resolution, but poor tissue contrast and requires ionizing
Table 3

Clinical applications.

Application Study population Method Representations Analyses Ref

Speech disorders Apraxic speech (n=1) ROI Midsag. images Aperture kinematics Hagedorn et al. (2017)

Surgery, speech disorders Pre- and post-surgery tongue cancer (n=8) Grid Midsag. images Aperture kinematics M�ady et al. (2003)

Surgery, speech disorders Post-surgery tongue cancer (n=5) ROI Midsag. images Aperture kinematics Hagedorn et al. (2014)

Surgery, swallow function Tongue cancer (n=4), controls (n=3) Manual annotation Midsag. + cor. images Tissue kinematics Zu et al. (2013)

Swallow function Controls (n=10) Manual annotation Midsag. + cor. + ax. images Qualitative, timings Olthoff et al. (2014)

Swallow function Brain stem infarct (n=3), controls (n=10) Direct image Midsag. + cor. + ax. images Qualitative Vijay Kumar et al. (2012)

Swallow function Controls (n=10) Manual annotation Midsag. + oblique ax. images Qualitative, timings Zhang et al. (2012)

VPI Children/young adults, suspected VPI (n=7) Direct image Midsag. + cor. + ax. images Qualitative Beer et al. (2004)

VPI Controls (n=10) Manual annotation Midsag. images Aperture kinematics Bae et al. (2011)

VPI Children/young adults with VPI (n=11) Manual annotation Midsag. + ax. images Tissue kinematics Drissi et al. (2011)

VPI Children with VPI (n=5) Direct image Midsag. + cor. + ax. images Qualitative Sagar and Nimkin (2014)

VPI Controls (n=6) Direct image Midsag. images Tissue dimensions Scott et al. (2012)

VPI = velopharyngeal insufficiency. All study subjects are adults unless otherwise noted. Midsag. = midsagittal, cor. = coronal, ax. = axial. Controls = healthy volunteers.



Fig. 5. RT-MRI analysis of post-glossectomy speech. Left: resting posture showing missing coronal tissue and reconstructed anterior part of tongue

dorsum. Right: articulation of final consonant in ‘bit’, revealing simultaneous dorsal and labial constrictions [kp
_
], substituting for the coronal stop

/t/.
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TaggedPradiation (X-rays). For this application, RT-MRI can potentially provide better tissue contrast and reduce the radia-

tion burden for patients. In an early study on swallow function, Zu et al. (2013) compared four controls to three

patients with tongue squamous cell carcinoma. RT-MRI images were analyzed by measuring oral transit time (OTT)

and pharyngeal transit time (PTT) of a swallowed bolus of yogurt. The change in submental muscle length (SM) and

the distance between the hyoid bone and thyroid cartilage (TH) were quantified. OTT and PTT were longer in

patients, which was consistent with previous VF studies. Furthermore, the patients showed altered motion patterns

in SM and TH, reflecting their dysfunctional swallow mechanics. The measurement of SM is unique to RT-MRI due

to the excellent soft tissue contrast. In summary, RT-MRI promises to be a versatile and sensitive method for clinical

evaluation of swallow function. One important weakness of RT-MRI is that the overwhelming majority of scanners

image the patient in the supine position, while swallowing is typically performed while upright. MRI scanners for

upright scanning do exist, although with significantly limited imaging performance.

TaggedPVelopharyngeal insufficiency (VPI) is a condition where the velum does not completely close against the phar-

ynx, with consequences for speech, eating (swallowing and chewing) and breathing. Causes for VPI include cleft

palate, adenoid gland removal, muscular weakness and motor speech disorders. Nasendoscopy and videofluoroscopy

(VF) are traditionally used for diagnosis and follow-up, but are limited by insufficient tissue contrast and muscle

visualization, and by ionizing radiation dose, which is especially important to limit in children. Beer et al. (2004)

used RT-MRI at 6 frames per second (fps) to study seven patients with suspected VPI, and compared results to VF

as the reference standard. Their main result was that qualitative interpretation of the RT-MRI images had excellent

agreement with VF, showing that classification of VPI is possible using RT-MRI. After this early study, several other

groups have improved image quality (e.g. by increasing temporal resolution to 21.4 fps, Bae et al., 2011) and shown

its feasibility in children, an important VPI patient group (Drissi et al., 2011).

TaggedPRT-MRI also has potential to be used in speech disorders to better understand different conditions, aid in diagno-

sis and refine treatment. Apraxia is a condition where neurological dysfunction leads to impaired motor planning of

the complex spatiotemporal patterns needed for speech production. Hagedorn et al. (2017) showed that RT-MRI

shows important new aspects of apraxic speech that are not visible using traditional methods, specifically covert

(silent) intrusion errors that are not picked up by audio recordings and greater variability between repetitions of the

same speech task (see Fig. 6). This pilot study shows the potential of RT-MRI to better understand speech disorders.

Furthermore, RT-MRI may be used to specifically tailor treatment programs for each patient individually.

TaggedPIn summary, RT-MRI has several exciting potential clinical applications, promising improved patient monitoring

and care. The main advantages of RT-MRI compared to currently used imaging modalities include the excellent soft

tissue contrast, free choice of imaging plane, and absence of ionizing radiation. The main obstacles to be overcome

are to establish cost-effectiveness, and to ensure widespread availability of high-quality RT-MRI sequences. Further-

more, there is a need to develop reliable software tools for reproducible quantitative measurements, which need to

be held to a high standard for accuracy and reproducibility (Kessler et al., 2015) to ensure reliable diagnosis and

evaluation.



Fig. 6. ROI analysis of apraxic speech. Top Left: location of regions of interest: labial, alveolar and velar; Top Center: production of alveolar

stop /t/; Top Right: production of velar stop /k/; Bottom: articulator traces from each ROI reveal that, for this subject, apraxic speech is charac-

terized by pervasive gestural intrusions (red arrows), not always evident in the acoustic speech signal because they occur simultaneously with

stop target gestures (Hagedorn et al., 2017). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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9. Discussion and outlook

TaggedPIn this review, we surveyed a range of methods that have been employed to analyze data obtained through real-

time magnetic resonance imaging (RT-MRI) of human vocal production. We have grouped these methods into four

main classes based on three main factors � the type of data processing method, abstractness or specificity of output

representation, and the amount of prior or auxiliary information required. These four classes of analysis are based

on: (i) the whole-image, (ii) regions-of-interest (ROI), (iii) analysis grids; and (iv) tissue contours. This typology of

analysis classes provides a unified way of understanding the various methods deployed in the field. Contextualizing

different techniques within this typology helps us understand the motivations and constraints which have influenced

the choice and development of these methods in the landscape of linguistic, speech science and clinical applications

and real-time MRI technology research (see Tables 2 and 3).

TaggedPIt is important to note that there is no standard recipe or “one size fits all” analysis method for a given dataset. The

choice of analysis method(s) depends on multiple factors � first and foremost, the specific research goal of the image

analysis in question. While one can apply a wide variety of techniques drawn from the computer vision and pattern

recognition community to such data, one should see how such methods and analysis tie back to the specific linguis-

tic, clinical or technological research questions that require a better understanding of the dynamics of vocal tract

shaping and the interplay between vocal tract structure and function. Other factors include the prior assumptions of

different processing methods and how the data were acquired. This last point is particularly relevant, as it determines

data characteristics and limitations such as the spatial resolution, temporal resolution, image artifact and noise pat-

terns, image size and overall data quality for the speech task in question, each of which informs subsequent image

analysis (for a more in-depth discussion, see Lingala et al., 2016). The inherent trade-off between spatial and tempo-

ral resolution means that in order to capture the rapid movement of articulators, such as those observed in Tamil ret-

roflex and tap consonants, for example, one might need to sacrifice spatial resolution, which in turn affects
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TaggedPsubsequent image analysis. Such trade-off choices, along with noise and artifacts can also influence how clearly we

can capture other smaller vocal tract structures, such as the velum (Sutton et al., 2010) and epiglottis.

TaggedPWe have further identified certain key issues which much be considered when performing RT-MRI analysis,

including reproducibility of analyses across speakers, datasets and studies. Important factors affecting reproducibil-

ity include MRI system variability, human error and reliability issues, and speaker-specific variability. Morphologi-

cal factors, such as the size of the head, vocal tract length and the degree of head movement and rotation, in

particular, varies from speaker to speaker and requires attention depending on the analysis in question, especially if

one is interested in making generalizations across speakers. Noise-robustness is yet another factor to take into

account while designing and implementing analysis techniques, and is crucial to ensuring reproducibility and gener-

alizability of the analyses. Yet another important consideration is the current lack of a gold standard or set of stand-

ards for collecting, processing and interpreting RT-MRI data. This could include benchmark datasets for interpreting

images, or for different analysis techniques such as image segmentation. This will require a joint effort by the entire

RT-MRI analysis community, including the extended community of radiologists/medical practitioners, electrical/

computer engineers and speech scientists/linguists.

TaggedPWe will also need such an interdisciplinary effort in order to tackle the many research directions that exist in this

still nascent field. We have argued in this paper for a combination of engineering data-driven and linguistic/clinical

knowledge-driven methods for RT-MRI image analysis. Going forward, one could use image analysis techniques to

inform data acquisition (for instance, using information from a previously acquired high resolution 3D image to

inform the choice of subsequent 2D imaging planes in real time). One could use an image atlas, obtained by a high-

resolution 3D scan, in conjunction with 2D images to obtain better inferences from the data. Additionally, one could

combine such image analyses with the analysis of data from other modalities, such as the speech signal, EMMA, or

XRMB, in order to build richer models and understanding of speech production dynamics. Further, such RT-MRI

video analysis and processing can inform subsequent higher-level modeling that in turn can provide an understand-

ing of linguistic and/or paralinguistic aspects of speech production. Finally, the wealth of data emerging from real-

time MRI, and related modalities, enable new modeling possibilities afforded by contemporary machine learning

advances; for instance, deriving insights through end-to-end mapping between acquired data and representations of

linguistic and cognitive importance.
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