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fewer speech dictionary elements than running speech, which
has a wider range of sounds. We ran the update equations for
300 iterations. The parameters used for the 2step algorithm
[14] are shown in Table IV. These parameters were determined
in the same manner we used to select the parameters for
the proposed algorithm. For the CS+SNG method [12], we
optimized the noise reduction coefficient parameter for the 5
objective metrics. We found the best value to be 0.3. The
LMS-model algorithm [11] does not require parameter tuning;
its parameter is based on fy, which is noise-dependent (see
Table I).

Figures 2 and 3 show spectrograms of removing seq3 noise
from an audio clip in the MRI-utt and Aurora 4 datasets
using the different denoising algorithms. Figure 4 shows the
average value of the cost function (Equation 8) at each iteration
when denoising files in the Aurora 4 dev set. The cost
function monotonically decreases and reaches convergence
after roughly 300 iterations for both datasets. Additionally, the
figure shows the average run time for the denoising algorithms
when processing files of different durations in the Aurora 4
dev set. We either chopped or zero-padded the files to achieve
the desired duration. Unfortunately, we see that the proposed
algorithm has the longest run time among the denoising
algorithms. Finding ways to improve computation efficiency
will be one of our priorities in improving the algorithm.

TABLE 1IV: Parameter settings for the number of speech
dictionary elements (ns) and wavelet packet depth (D) in the
2step algorithm. The number of noise dictionary elements was
set to 70 and the window length for wavelet packet analysis
was set to 2048 for all noises. See [14] for more information
about the 2step parameters.
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Fig. 2: Noisy and denoised spectrograms of the sentence
“Don’t ask me to carry an oily rag like that” in the MRI-utt
dataset. The noise is seq3.

A. Objective Results

Table V lists the average noise suppression across each
utterance in the MRI-utt dataset. We used the nonparametric
Wilcoxon Rank-Sum Test to determine if the medians of the
noise suppression (and the other metrics) are significantly
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Fig. 3: Clean, noisy, and denoised spectrograms of the sentence
“The language is a big problem” in the Aurora 4 dataset. The
noise is seq3.

Cost function vs. iterations

Run time vs. audio duration
102 60

[=Proposed —2step — CS+SNG —LMS-model |

100

40

=)
E

3

>
Average run time (s)

\

] -

100 200 300 400 500 2 4 6 8 10
Iterations Audio duration (s)

Average value of cost function
3

=)
™
5}
o

Fig. 4: Average values of the noisy cost function (Equation 8)
as a function of iteration number and average run times for
the denoising algorithms as a function of audio durtaion for
the Aurora 4 dev set.

different between the different denoising methods. In Table V
and subsequent tables, a bolded value indicates the best-
performing algorithm and an asterisk denotes statistically
significant performance with p < 0.05. Table VI shows the
noise suppression, LLR, distortion variance, PESQ, and STOI
results for the Aurora 4 test set.

We see that our proposed algorithm consistently has the
least signal distortion compared to the other denoising meth-
ods, except for the LLR measurement in seql, seq2, and seq3
noises, where the LMS-model performs the best. Unfortu-
nately, this comes at a cost of less noise removal, as indicated
by the better noise suppression performance of CS+SNG for
all of the pulse sequence noises in the Aurora 4 datasets.
However, as we discussed in Section VII, minor changes
in parameter settings can vary the trade-off between noise
suppression and distortion, depending on the user’s needs. We
also see that our algorithm always gave the best STOI scores

TABLE V: NS results (dB) for the MRI-utt dataset.

Sequence | Proposed  2step CS+SNG  LMS-model
seql 30.18 25.52 33.51 13.90
seq2 29.42 14.71  31.87* 15.04
seq3 29.55 13.65 31.79* 16.70
ga2l 29.26 1547  31.57* 13.81
ga55 30.34 14.74  33.19* 10.30
mult 29.22 12.69 32.87* 0.47
st3d 10.82 7.99 10.12 —1.69
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TABLE VI: NS, LLR, DV, PESQ scores, and STOI scores for
the Aurora 4 dataset.

TABLE VII: Mean rankings of the audio clips for each dataset
corrupted with different pulse sequence noises.

Metric Sequence Proposed 2step CS+SNG LMS-model Dataset Sequence | Clean Proposed 2step CS+SNG LMS-model  Noisy
seql 15.42 11.17 18.08% 9.52 ::g; - if; j‘gi 44~4£‘ iﬂ }‘7’3
seq2 15.78 11.38 17.49: 9.62 seq3 o 356 347 3.81 371 166
NS seq3 15.61 11.38  18.24 10.33 MRLutt g2l — 381 325 421 3.48 1.64
4B ga2l 15.39 11.29  16.57* 8.71 gas5 — 3.54 3.65  3.94 2.70 1.65
@B) ga55 14.96 10.95 16.36* 7.16 mult — 3.44 3.39  4.10% 1.94 1.99
mult 14.93 10.51  16.61* 0.21 5131 gy 42-175* 33;1 333 ?2)3; Bg
* _ seq 5. . 3. .9¢ . .26
st3d 14.78 11.98 17.12 1'80* seq2 5.66  4.17*  3.58 3.09 3.30 1.29
seql 1.004 3.676 2.462 0.987 seq3 560  4.06° 364  3.48 3.28 1.33
seq2 1.058 3.666 2.046 0.931* Aurora 4 ga2l 5.71 4.46* 3.94 2.95 2.87 1.28
seq3 1.012 3.650 2.065 0.850* gas5 5.63  4.34*  3.82 3.20 2.33 1.30
LLR ga2l 1.018* 3.329 1.987 1.058 mult 5.69 4.18 4.28 3.22 1.59 1.66
0255 1.020*  3.179 1.882 1.497 st3d 572 4.26*  3.62 3.57 1.39 1.93
mult 1.098* 3.486 2.480 2.839
st3d 0676" 2.522  2.265 2.094 TABLE VIII: Mean ratings of the audio clips for each dataset
seql 1.933* 2.502 2.512 3.105 . iff .
seq? 1919* 2481  2.401 3.094 corrupted with different pulse sequence noises.
DV seq3 1.846* 2.342 2.428 3.013
. ga2l 1.635* 2.149 1.909 2.941 Dataset ~ Sequence | Clean Proposed 2step CS+SNG  LMS-model  Noisy
OA0™) - ass 1.497*  1.908  1.769 3.043 o S VA ) 21
mult 1.552*  1.897 1.941 4.187 seq3 — 28 266  3.07 3.00 1.19
st3d 0.971* 2.919 1.683 4.217 MRI-utt ga2l — 2.93 2.65 3.36* 2.80 1.29
seql 2.20 2.49% 1.95 1.91 2a55 — 2.99 294 314 2.09 1.32
8832 2923 2.60* 2.09 1.97 mult — 2.44 2.40 3.14* 1.20 1.36
seq3 230 267" 2.06 203 st3d — 173 207 178 1.53 1.27
N seql 1.78 358  3.39 2.75 2.85 133
PESQ gagé ;Zg ggi’* 3(131 }3471 seq2 478 368 317 275 2.98 1.35
ga . . . . seq3 4.73 3.59* 3.28 3.17 2.99 1.45
mult 2.30 2.70* 2.08 1.56 Aurora ga2l 4.82 3.83* 3.44 2.75 2.70 1.36
st3d 3.01* 2.12 2.02 1.97 gaSIS i;g 3.74* :;44 ggg %ég 1;5;4;
- = mult . 3.66  3.66 . . 1.
:Zgé g‘g%* gg% 8;38 82(;3 sB3d 477 363 324 3.4 144 1.61
seq3 0.920* 0.795 0.788 0.883
STOI ga2l 0.920* 0.782 0.828 0.861
gaS5 0.922* 0.798 0.836 0.825 . .
ult 0.907* 0792  0.790 0714 proposed algorithm gives a better STOI score. The?se results
st3d 0.964*  0.705 0.812 0.765 suggest that the 2step approach preserves properties of the

and the best PESQ score in st3d noise. The low distortion
coupled with good speech intelligibility indicates that our
proposed algorithm produces denoised speech that can be
used reliably for speech analysis and subjective listening tests.
We observe that the proposed algorithm improves upon our
previous approach (2step algorithm) in all measures except
the PESQ score in real-time pulse sequences. This observation
suggests that incorporating phase information results in better
separation of speech and noise, particularly at frequencies
where there is overlap between speech and noise.

For the st3d noise, we see that our algorithm far outperforms
the other denoising methods in terms of signal distortion,
speech quality, and intelligibility. This encouraging result
suggests our denoising approach is better suited for removing
aperiodic noise, such as st3d pulse sequence noises, than other
denoising approaches. One reason why our algorithm shows
better results for st3d compared to the real-time sequences is
that our algorithm had access to the st3d noise-only signal
while it extracted the real-time sequence noises from the
start of the noisy speech. Meanwhile, CS+SNG had access
to the noise-only signal for all sequences. We performed the
experiment in this way because we wanted to mimic how these
algorithms function in the wild; CS+SNG requires a reference
noise signal while our algorithm can handle having partial
information about the noise signal.

It is interesting to note that the 2step algorithm gives a
better PESQ score for the real-time sequence noises while the

speech that lead to better perceptual quality while the proposed
method retains speech properties important for conveying
speech content. This finding warrants further investigation into
the specific speech properties required for good speech and
quality and intelligibility, and understanding how the proposed
and 2step algorithms preserve these properties. Incorporating
these properties in the optimization framework of the proposed
algorithm can further improve the denoised speech quality.

B. Listening Test Results

Table VII shows the mean rankings obtained from the
listening test for the 3 datasets corrupted by the pulse sequence
noises. A higher value indicates a better ranking. In this
table, we highlight the best rank in bold and statistically
significant results, marked with an asterisk, are computed by
comparing the rankings among the denoising methods only;
not surprisingly, the rankings for the clean speech are always
significantly better than the denoised speech. Table VIII shows
the mean ratings of speech quality obtained from the listening
test. As with the ranking results, we highlight the best statisti-
cally significant results when comparing the ratings from the
denoising methods.

We see from Tables VII and VIII that listeners compared
the denoised speech from our algorithm favorably with the
denoised speech from CS+SNG. In all cases in the Aurora
dataset, listeners ranked and rated our output as the best
denoised speech. More interestingly, we see that our algorithm
ranked and rated the best among the denoising algorithms for
removing st3d pulse sequence noise in the Aurora dataset.
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Though the ratings are poor for the MRI-utt dataset, they are
a promising indicator that our algorithm is a step in the right
direction for handling aperiodic, high-power noise corrupting a
speech recording. Another observation is that the rankings and
ratings for the LMS-model algorithm decreases when going
from Sequence 1-3 noise to Golden Angle noise and finally
to multislice and static 3D noise. In contrast, the proposed
algorithm performs consistently well in the different noises,
giving speech researchers greater flexibility in choosing an
MRI sequence to study the vocal tract.

IX. CONCLUSION

We have proposed a denoising algorithm to remove noise
from speech recorded in an MRI scanner. The algorithm
uses CMF-WISA to model spectro-temporal properties of the
speech and noise in the noisy signal. Using CMF-WISA
instead of NMF allowed us to model the magnitude and
phase of the speech and noise. We incorporated spectral and
temporal regularization terms in the CMF-WISA cost function
to improve the modeling of the noise. Parameter analysis of the
weights of the regularization terms gave us optimum ranges for
the weights to balance the trade-off between noise suppression
and speech distortion and also showed that having the regular-
ization terms improved denoising performance over not having
the regularization terms. Objective measures show that our
proposed algorithm achieves lower distortion and higher STOI
scores than other recently proposed denoising methods. A lis-
tening test shows that our algorithm yields higher quality and
more intelligible speech than some other denoising methods in
some pulse sequence noises, especially the aperiodic static 3D
pulse sequence. We have provided a MATLAB implementation
of our work at github.com/colinvaz/mri-speech-denoising.

To further extend our work, we will improve the contri-
bution of the temporal regularization term by modeling the
distribution of the noise time-activation matrix in a data-driven
manner rather than assuming a log-normal distribution. Addi-
tionally, we will incorporate STFT consistency constraints [32]
and phase constraints [33] when learning the speech and noise
components to reduce artifacts and distortions in the estimated
components. In our current work, we made strides towards
addressing convolutive noise in the MRI recordings by using
spectral regularization to account for filtering effects of the
scanner bore, but a more rigorous treatment of convolutive
noise might further improve results. Given that the primary
motivation behind recording speech in an MRI is for linguistic
studies, we will evaluate how well our algorithm aids speech
analysis, such as improving the reliability of formant and pitch
measurements. However, we will also target clinical use of this
algorithm by developing a real-time version that facilitates
doctor-patient interaction during MRI scanning. Finally, we
will evaluate the performance of our algorithm in other low-
SNR speech enhancement scenarios, such as those involving
babble and traffic noises to generalize its application beyond
MRI acoustic denoising.
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APPENDIX A
DERIVATION OF UPDATE EQUATIONS

When learning the speech basis and updating the noise basis
from the noisy speech, we used the following cost function:

C (9> = Jerror (V) + astpaIs (Hs> + 'YJremp (Hn> + Jspec (Ws)

(26)
where X )
Jeror (V) = IV = V1%, @)
tn
Jspars (Hs) = ZH[HS]J ||17 (28)
j=1
Jiemp (Hyp) = Dxr (In (Ha) [[In (Hy)) , (29)
and )
Jspee W) = [A(Wa — Wa) [|- (30)

0 = (Ws,W,,H,, H,, Ps, P;) is the set of parameters we
seek when optimizing the cost function, and V = W,H, ®
P, + W,H, ® P,.

In this work, we assume that In(Hy;) ~ N (u,Y) and
In(H,) ~ N (m,S), with diagonal covariance matrices
and S. In this case,

1 N
Jmp (Ha) % 5 | 10 (§71) + (=) " §7* (10— o)

A 3D

det ($)

—kg+In | —=

det (Z)
We estimate g with the sample mean [ =
L idzlln([Hd]t) and Y with the sample covariance
3 ~ N\T
z = tdlfl Z?‘:l (In([Hd],) — @) (In[(Ha,) — N)A

and keeping only the diagonal elements in X.
Similarly, we estimate m with the sample mean
m = i Zz’;l In([H,],) and S with the sample covaTriance
& tn N -

S = tnl—l t=1 (In ([Hn]t) — 1) (lri [(Hn]t) —m)" and

keeping only the diagonal elements in S.
When minimizing the primary cost function is difficult, an
auxiliary function is introduced.

Definition 1. C'* (0,0) is an auxiliary function for C () if
C*(0,0) = C(0) and CT(0,0) = C (0).

It has been shown in [23] that C (#) monotonically de-
creases under the updates 6 < argming CT (6,6) and 6 <
argming C* (6,6).

We form the auxiliary function as

C(0,0) = T (V. V) + e (H,, L)
+ Viémp (Hns Hi) + Topee (W)

(32)
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where
-7,
oo |0, [1
T (VV) =30 I
f=1t=1 [ﬁs]ft (33)
2
AP A
2> =,
f=1t=1 [/Bn]ft
ks n 9
i * p— 2
Js}tars (Hé’HS) = k:1; (p | [Hs} kt’ [H ]kt (34)
+2|[H ]| = o[ ]")
and
Jt:mp (HTHHH)
_1 §—1% o T g1 (s o
=3 tr E) +(m—p) ST (m—i) 35)
. det (S
—kd+tr(§ 1S> +In Q —kq |,
det (E)
where = LAYt In([H,],) ad S =
n = ~ - N
oot iy (0 ([Ha],) =) (n [(Ha],) — )"
0 = (V,H,, H,) are the auxiliary variables. 0 < p < 2 is

a parameter for Z Pl i” 1 [[Hsy|” to promote sparsity in
H,. In our work, we measure the ¢; norm of H,, so p = 1.
Proofs that J, and Jg, are auxiliary functions for Jeror
and Jgrs respectively can be found in Appendix A of [24],
so we will focus on proving that J% is an auxiliary function
of Jiemp-

Since we assume that each row of H; and H, are inde-
pendent, we will consider each row separately. In this case,

Equation 31 simplifies to

~92 A2 a2
Jiemp (hn) = % <”+(”;“) ~1+4In (;)) (36)

emp

+
Jtemp

(Ros ) =

+1n(5) —1—1n(6?)

Theorem 1. J,jmp (hn,ﬁn) is an auxiliary function for
Jtemp (h )

Proof. If h, = h,, then m = m and 52 = §2.
In this case, Jibnp (Bn, Pn) = Jiemp (hn).

Jt;rmp (hna E’n)

/\2 /\2
= <£2 + In (5

ln( ) + (2
82
+ In <52>
(33)

Hence J{e"mp (hn,l_zn) > Jiemp (hy) and Jt;"mp (hpn,hy) =
Jtemp (hn) B

. Jmp (Rn, By is an auxiliary function for Jiemp (By). O

— Jiemp (hn)

)1)1n(§2)
: _1) In (52)
> 1In (3 ) In(z) <z — 1Yz >0

The optimum value of the auxiliary variable h,, can be found
by setting the gradient of Jif (hn, hy) wrt. h, equal to

Zero.
(R — L,
Vi, Sdmp (R ) = = D&h,
@ (n () )
(tn — 1) (82)* b,
_ 52 _ (39
In () — il = 55 (1n (By) i,

32 - 32\ .

In (’_ln) = ﬁbltn

(1

Jtemp (hn7 h ) can be rewritten for all rows of H; and H,, as
Equation 35 and the auxiliary variable H,, can be updated as
H, = dlag( ) 1k, xt, -

We did not create an auxiliary function for Jgpec (Wh)
because it is already quadratic in W,, so minimizing
Jopee W.rt. W, is not difficult. Indeed, Vi, Jopee (Wy) =
ATA (W, — Wy).

A. Basis update equations

To find the update for Wy, we need to find Vy CT (9, 5).
Since the regularization terms we added do not contain Wi,
they do not affect gradient. Hence, we use the update equation
derived in [24], which results in Equation 14.

To find the update for W,,, we calculate VWn ct (9, é) =
Vit (Jeror (Vo 7) 4 Jipee W) Vi, Jer (V. V7)

wHT is derived in [24] and Vi, Jepec (Wy) =

ATA (W, — Wa). So,

Vi, CF (6,0) = wﬂ,{ +ATA (W, — Wy).
(40)
The update equation for W, is
+ (0 B
W W 0 G (0:6) @1)

[Vw,C* (6.6)]"

which leads to the update equation given in Equation 17.
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B. Time-activation update equations

To find the update for H,, we need to find Vg, CT (6,0).
As in the case with Wy, the added regularization terms do
not contain Hg so they do not affect the gradient. Hence,
we use the update equation derived in [24], which results in
Equation 15.

To find the update for H,, we calculate
Vu,C* (0,0) = Vg, (Jtr (V, V) + Y T (HmHn)).
Vi, I (f/, V) - WT% is derived in [24].

Define U = diag (&) and M = diag ().

1 A o
- —— 57
i

(M — U)) (1n(Hn) - Ml}c“xtn)

1 4 .
8 (1n () - Mh%m)]
(42)
The update equation for H,, is
Vu,Ct(0,0)]
H, i, o " (0.0) 43)

(Vi 0 (0.6)]"

Note that U, M, and In(H,) are mixed-sign matrices. A
mixed-sign matrix A can be rewritten in terms of non-
negative matrices as A = [A]" — [A]”. Rewriting the mixed-
sign matrices leads to the update equation for H, given by
Equation 18.
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