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Abstract

Development of robust spoken language technology ideally re-
lies on the availability of large amounts of data preferably in
the target domain and language. However, more often than not,
speech developers need to cope with very little or no data, typ-
ically obtained from a different target domain. This paper fo-
cuses on developing techniques towards addressing this chal-
lenge. Specifically we consider the case of developing a Per-
sian language speech recognizer with sparse amounts of data.
For language modeling, there are several potential sources of
text data, e.g., available on the Internet, to help bootstrap initial
models; however, acoustic data can be obtained only by tedious
data collection efforts. The drawback of limited Persian acous-
tic data can be partially overcome by making use of acoustic
data from languages that have vast resources such as English
(and other languages, if available). The phoneme sets espe-
cially for diverse languages such as English and Persian differ
considerably. However by incorporating knowledge-based as
well as data-driven phoneme mappings, reliable Persian acous-
tic models can be trained using well-trained English models
and small amounts of Persian re-training data. In our experi-
ments Persian models re-trained from seed models created by
data-driven phoneme mappings of English models resulted in a
phoneme error rate of 19.80% as compared to a phoneme error
rate of 20.35% when the Persian models were re-trained from
seed models created by sparse Persian data.

1. Introduction

In the past few years automatic speech recognition (ASR) has
had tremendous success in several different languages. How-
ever statistical approaches used in ASR rely on the availabil-
ity of large amounts of speech and text data. The rapid trans-
fer of ASR technologies to new languages is hampered by the
non-availability of sufficient data in new languages, specifically
in the target domain of the application. This is especially se-
vere at the initial launching stages of application development.
Text data required for language modeling has several potential
sources e.g., newspapers from the Internet. However speech
data required for acoustic modeling can typically only be ob-
tained by tedious data collection efforts. To overcome this
drawback speech data available in resource rich languages like
English can be used to help build the target language acoustic
models. This effectively reduces the amount of speech data that
needs to be collected in the target language thus enabling sav-
ings in cost as well as reducing the time required to deploy ASR

systems in new target languages.

The DARPA Babylon project [1] investigates the develop-
ment of speech to speech (S2S) systems capable of support-
ing conversations between people speaking different languages
without requiring human translators. The languages considered
were English and Persian (Farsi), and the target task was medi-
cal domain (details of the S2S system are in [2]).

In this paper, we specifically consider the development of
a Persian speech recognizer using limited amount of Persian
speech data and borrowing acoustic data from English speech
data. Note that we only address the problem of acoustic model-
ing, we do not address the problem of language modeling.

Phoneme mappings from the English phonemes to the Per-
sian phonemes are derived to create seed models for the Persian
acoustic models using English speech data. These seed mod-
els are further adapted or re-trained using the limited amount of
data available in Persian. In addition to a knowledge (linguis-
tic) based phoneme mapping we present a novel data driven
phoneme mapping technique based on the Earth Movers Dis-
tance (EMD). The difficulty in deriving phoneme mappings be-
tween different languages is that closed form pdf “distance”
metrics are not available for Gaussian mixture models (GMMs),
which are typically used in acoustic models. Our proposed algo-
rithm combines a bipartite network flow algorithm with distance
between Gaussian pdfs (which have a closed form expression)
to provide a low complexity phoneme (HMM) distance metric.
Using only the sparse Persian speech data to build a speech rec-
ognizer resulted in 20.35% phoneme error rate. However the
proposed EMD based data driven phoneme mapping technique
achieved 19.80% phoneme error rate on the same task, which is
a 2.70% relative reduction in phoneme error rate.

Previous work in the area of language independent acoustic
modeling is presented in Section 2. Section 3 presents details
of the knowledge and data driven phoneme/sub-phoneme map-
pings. Section 4 presents experiments and results. Conclusions
are in Section 5.

2. Previous Work

The most intuitive and straightforward approach is to use
knowledge (linguistic) based phonetic mappings. This has the
desirable feature of not requiring any speech data in the target
language. The proposed knowledge based mappings are based
on IPA phoneme definitions [3, 4] or phoneme classes [5]. How-
ever it has been observed that data driven approaches usually
outperform these knowledge based approaches ([3, 6] and Sec-
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tion [4]).

Language mixed/tagged approaches [7] have been proposed
for acoustic model combination. These approaches initially
map phonemes based on a knowledge (IPA) based approach.
Then for phonemes mapped to the same IPA symbol in the lan-
guage mixed approach, all parameters of the Gaussian mixture
are kept the same and in the language tagged approach, only the
means and variances are kept the same and language specific
mixture weights are trained for each of the languages. While
this makes parameter estimation easy it might be restrictive in
modeling the differences in phonemes from different languages.

A data driven confusion matrix based phoneme mapping
technique [3] has been previously proposed. The confusion ma-
trix is created by running a free phoneme recognizer using the
acoustic models of the source phonemes. The phoneme align-
ment achieved by this phoneme recognizer is compared to the
target language phoneme alignment of the utterance. The tar-
get phoneme alignment is then created either by human tran-
scription or by force alignment. The entries in the confusion
matrix indicate the co-occurrences between the source and tar-
get phonemes. The target phoneme is created by choosing the
source phoneme which has the highest co-occurrences with the
target phoneme. The problem with this approach is that, in
general, phoneme recognition rates are not very reliable even
when applied to the same language in which the phonemes were
designed, it can be expected that when source phonemes are
used for phoneme recognition of target language utterances the
phoneme recognition performance will be poor. This might re-
sult in bad estimates for the source to target phoneme mappings.

A language adaptive clustering [3] previously proposed,
imposes for computational reasons, the use of affine transfor-
mation while transforming feature vectors between languages.
Since the differences between the same phonemes in different
languages is definitely influenced by contexts, the restriction of
using only affine transformation maybe be restrictive.

Different phoneme distance matrices have been evaluated
for deriving phoneme mappings [6]. It is shown that the
Jeffreys-Matusia distance measure achieves better performance
than knowledge based phoneme mappings. However since most
of the distances they have considered do not have closed form
expressions for pdfs (other than Gaussians), their solution in us-
ing these distance metrics for mixture Gaussians is to calculate
the distance per mixture per state and add the distances to get
the distance between phonemes. We will show in Section [3]
that there exists a more formal method of combining the dis-
tance between Gaussian to calculate the distance between mix-
ture Gaussians and find the phoneme mappings.

Unlike previous approaches we do not impose either trans-
formation or parameter constraints. The phoneme mappings are
determined completely by the acoustic models in the source and
target languages.

3. English to Persian Phoneme Mappings

Similar to previous work [3, 7] we also mapped En-
glish to Persian phonemes wusing linguistic knowl-
edge. The detailed phoneme mappings are available at
<http://sail.usc.edu/transonics/documents.html>. While it can
be expected that the knowledge driven approach will result
in meaningful phoneme mappings, its failing are two-fold

(i) speaking styles and phoneme contexts especially between
diverse languages like Persian and English can result in
differences between “similar” phonemes, thus the mapping
may not be optimal at the acoustic feature level; and (ii) unseen
phonemes in Persian (the Velar fricative and the Uvular stop) do
not have equivalent representations in English. These reasons
result in significant degradations in recognition performance
when pure knowledge driven phoneme mappings are adopted.

To overcome these drawbacks a data driven approach is re-
quired. Here the phoneme mappings are automatically derived
from Persian and English speech data. The advantages of this
approaches are (i) acoustic models in the source and target lan-
guages determine the “optimal” mappings, this enables better
ASR performance since we operate directly on the models be-
ing used for speech recognition and (ii) sub-phonetic mappings
can be derived which enables us to create better target acoustic
models from source acoustic model components, furthermore
the sub-phonetic mapping enables the creation of acoustic mod-
els for unseen Persian phonemes, which was not possible by the
knowledge driven approach.

3.1. Phoneme mapping using the Earth Movers Distance

One of the main difficulties in using a data driven approach is
the lack of a suitable distance metric between acoustic models
which can be used to categorize phoneme similarities. We adopt
the Earth Movers Distance (EMD) to find similarities between
the phonemes. EMD was originally introduced for navigation
in image databases [8]. It has subsequently been extended to
3-D vector fields [9] and also has been used for content based
music similarity [10]. EMD is a method to find distances be-
tween “signatures”. For our problem the acoustic models of
the English and Persian phonemes are regarded as signatures,
and EMD is used to find the distance between them. These
phoneme distances are calculated for all phoneme pairs. Each
Persian phoneme is then mapped to the English phoneme which
has the smallest distance from it. Note that with this approach
unseen Persian phonemes will be assigned to the closest En-
glish phoneme. Since this might result in bad seed models for
the unseen phonemes, we can operate at the HMM state level.
Now the seed HMM:s are constructed by borrowing states from
different HMMs to construct a Persian HMM.

Before presenting the phonetic and sub-phonetic map-
pings, the EMD algorithm is briefly described. Assume
we want to find the distance between two Gaussian mix-
ture models (GMMs); Gt ~ Zfitl cEN(pt,of) and G5 ~
Z;V:Sl ¢;N(uj,07) where i, o and cj; are the mean, stan-
dard deviation and mixture weight, respectively, of the k"
Gaussian in the GMM G, (note that the number of mixtures,
N; and N, in the two GMMs can be different). In the spirit
of EMD the distance between G and G5 can be formulated
as the “amount of work” needed to convert the pdf defined by
G to the pdf defined by G;'. Let d;; be the work needed to
transform a unit probability mass from N(u3,05) 7 € Ns to
N(ut,of) i € Ny. Then we have a bipartite network flow prob-

INote that the distance between G5 and Gy can be defined as
D(G¢]|Gs), i.e., the KL distance, however there is no closed form ex-
pression for KL distance between GMMs and the problem is further
complicated when the GMMs model high dimensional vectors, as is the
case in acoustic models of practical speech recognizers.
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The distance d;; should measure the difference between pdfs
N(ui,of) and N(u3,03). A suitable metric to measure this
dissimilarity is the symmetric KL distance which for Gaussians
is

dij = : (o1)° + (o3)"
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This distance has the desirable property of being zero only when
the two pdfs are same and being small when the pdfs are similar
and large when they are not. If f{} is the flow minimizing the
cost in Equation (1) then the distance between G and G is
DG]M]\/I(GS7Gt) _ ZiENt ZjeNS dzj*fzj (4)
ZieN,, Z]‘ENS I
Since acoustic features used in ASRs are vectors which are usu-
ally modeled by diagonal co-variance matrices, the distance be-
tween states can be calculated as

M

Dsrare(Ss,St) = Z Deum (G, GS,) (5)

m=1

where G™ is the GMM of the m!" acoustic feature in the
" state. Equation (5) can be used to find the distance be-
tween HMMs. Let Py, P, be the set of all Persian and English
phonemes respectively. Let each of the phonemes py € Py and
Pe € Pe be modeled by a Persian HMM H,,, and an English
HMM H,, respectively. Let S denote state s of an HMM H,.
Then the distance between the HMMs (phonemes) is

s
Dunvi(pe,py) = Z Dsrare(Sy,, Sf,f) 6)
s=1

We assume that both the Persian and English phonemes have
the same number of states, which is a reasonable assumption.
Given the State and HMM distance definitions (Equa-
tions (5) and (6)), we are ready to propose our data driven
phonetic/sub-phonetic mapping techniques.

Algorithm 1 (Phonetic mapping: English to Persian)

Step 1: Design HMMs for all English phoneme models and
HMMs for all Persian phonemes (with limited available Persian
speech data).

Step 2: for each p € Py M (p) = argmingep. Dy (g, p)
Step 3: Set Hpy(p) as the seed model for Persian phoneme p

Algorithm 2 (Sub-phonetic mapping: English to Persian)
Step 1: Design HMMSs for all English phoneme models and
HMMs for all Persian phonemes (with limited available Persian
speech data).

Step 2: for each p € Py
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Step 3: foreachs € S M,(p) = argmingep.Dsrare(S;,Sy)

Step 4: For Persian phoneme p, use Ms(p) as state s of the
seed HUM H,

The seed HMM models constructed by either knowledge or
data driven approaches can be used for either adaptation or re-
training using the limited amount of target domain Persian data
available.

4. Experiments and Results

HTK 3.1 was used to design the recognizers. All speech data
used in the experiments were downsampled to 8 kHz. The fea-
ture vectors used were 12 MFFCs and the zeroth cepstral coeffi-
cient and their A and AA derivatives, using hamming windows
of 25 ms with a feature vector calculated every 10 ms. Both En-
glish and Persian phoneme models had 3 states with 16 GMMs
per state. The English models were created from the train sub-
set of TIMIT database. For Persian data we used FARSDAT
database, which consists of 22.5 kHz recordings by 300 Per-
sian speakers from 10 different dialect regions of Iran. For
our experiments we transcribed data from 80 speakers which
gave us approximately 2800 sec of speech. A new transcription
scheme USCPers+/USCPron, for Persian was developed [11].
This transcription scheme uses only ASCII characters for repre-
sentation and also adds the vowels which are usually not present
in written Persian (which uses the Arabic script).

Additionally we collected and transcribed speech from 18
native Persian speakers (9 females and 7 males), each of whom
read approximately 250 short phrases in the target medical do-
main. This collected data were used for adaptation/re-training
and testing, but not for creation of baseline Persian acous-
tic models. Since the data available was less, we adopted a
hold-one-out strategy (or cross validation) in our experiments,
wherein the models were adapted/re-trained using data from 17
speakers and tested on the 18", This was repeated for all 18
speakers and results reported are the average WERs.

We compare Persian adapted/re-trained ASRs using seed
models from (i) sparse Persian speech data (FARSDAT), (ii)
knowledge based English phonemes, (iii) data driven phonetic
models and (iv) data driven sub-phonetic models, in a medical
domain task to evaluate our proposed techniques. Our proposed
techniques differ from previous techniques in that we use the
phoneme mappings (both knowledge driven and data driven)
to create seed models which are further adapted/re-trained us-
ing the sparse speech data available in the target Persian lan-
guage, while most previous techniques propose the develop-
ment of acoustic models in the target language using data from
all available speech data.

To evaluate our proposed techniques we performed a free
phoneme recognition with phonotactic bigram constraints and
a finite state grammar (FSG) based phrase recognition. Ta-
ble 1 and 2 show the phoneme recognition error rates and the
WER obtained in our experiments. Observe that for both the
phoneme and phrase recognition experiment while knowledge
based phoneme mappings achieved good results, better results
are achieved with data driven sub-phonetic mapping. Specifi-
cally after re-training, knowledge based ASR achieved 20.00%
phoneme error rate, sub-phonetic mapping based ASR achieved
19.80% phoneme error rate while sparse Persian data ASR
achieved a phoneme error rate of 20.35% i.e., we achieved
a 2.70% relative reduction in phoneme error rate using sub-
phonetic mapping over the sparse data ASR. For the FSG based
phrase recognition, sub-phonetic mapping achieved a WER of



20.89%. This is better than the 21.94% WER achieved by
knowledge based mapping. Also note that sub-phonetic map-
ping achieves better results than phonetic mapping in both the
experiments. This is due to the fact there is considerable differ-
ence between the English and Persian phonemes. Sub-phonetic
mapping assembles a Persian HMM by combining states from
different English HMMs. This enables construction of “better”
Persian HMMs than that was possible by the phonetic mapping
techniques.

We also observe that our proposed techniques while having
better performance when the re-training is used does not per-
form as well when only adaptation is used. The possible reason
for this is that the adaptation scheme used, MLLR, is restricted
to only linear transformations which as mentioned before may
not be sufficient to model differences in phonemes between dif-
ferent languages, where phoneme contexts play an important
role.

However these results are very encouraging, illustrating that
it is possible to make use of acoustic data even between diverse
languages like English and Persian to improve the performance
of ASRs in languages constrained by sparse data.

Seed Models Phoneme Error Rate
Re-training | Adaptation
FARSDAT 20.35% 38.95%
Knowledge based 20.00% 39.87%
Phonetic mapping 20.13% 57.03%
Sub-phonetic mapping 19.80% 51.48%

Table 1: Phoneme error rates obtained for different approaches.
Observe that sub-phonetic mapping ASR achieved the best
recognition performance when re-training was used.

Seed Models Word Error Rate
Re-training | Adaptation
FARSDAT 20.52% 40.97%
Knowledge based 21.94% 58.54%
Phonetic mapping 24.30% 78.52%
Sub-phonetic mapping 20.89% 69.62%

Table 2: WERs obtained for different approaches. Observe that
the result achieved by the data driven sub-phonetic mapping
ASR, out-performs the knowledge based ASR when re-training
was used.

5. Conclusions

We proposed a data driven phoneme mapping technique which
can be used to use data from “resource” rich languages to cre-
ate seed models in resource poor target languages to enable de-
sign of good acoustic models in the target language. The pro-
posed technique was extended to enable sub-phonetic mappings
which enables modeling of unseen target language phonemes.
We have addressed only one area of language independent ASR,
namely acoustic modeling. However this is arguably the most
important issue which currently prevents rapid transfer of ASR
technologies to new languages.

As future work we are interested in using these techniques
for Arabic. Furthermore our data driven mappings ignored
temporal information in deriving the phonetic mappings, we
are currently exploring techniques to use temporal information
which could enable better data driven phonetic mappings. The
current work derived mappings only for context independent
models, we are interested in extending the data driven tech-
niques to derive mappings for context-dependent models.
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