# exploreCSR CoreML Workshop

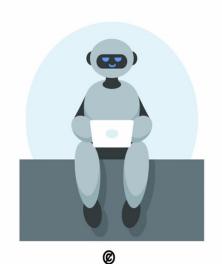
## Tuo Zhang





Ming Hsieh Department of Electrical and Computer Engineering

### What is Machine Learning?



publicdomainvectors.org

"Humans appear to be able to learn new concepts without needing to be programmed explicitly in any conventional sense. In this paper we regard learning as the phenomenon of knowledge acquisition in the absence of explicit programming."

--- A Theory of the Learnable, 1984, Leslie Valiant

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."



--- Machine Learning, 1998, Tom Mitchell











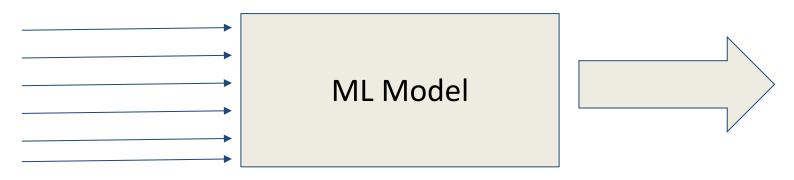
\$

I am ChatGPT, a large language model created by OpenAI, designed to answer questions and generate human-like text based on a vast dataset of written content. I use deep learning algorithms to analyze and understand the context of the questions asked, and then generate a response that is relevant and helpful.



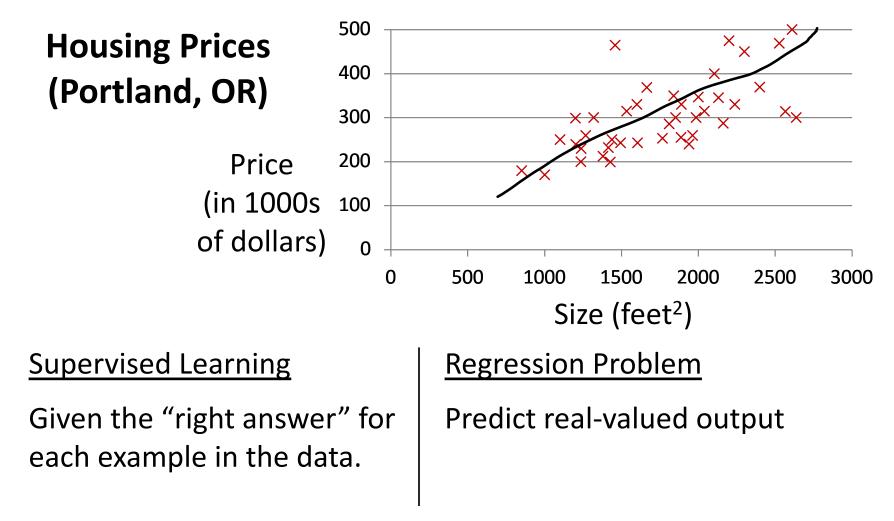
### Today's Workshop:

- 1. Understand the fundamentals of ML models
- 2. Understand how to train a ML model



#### Data flow in

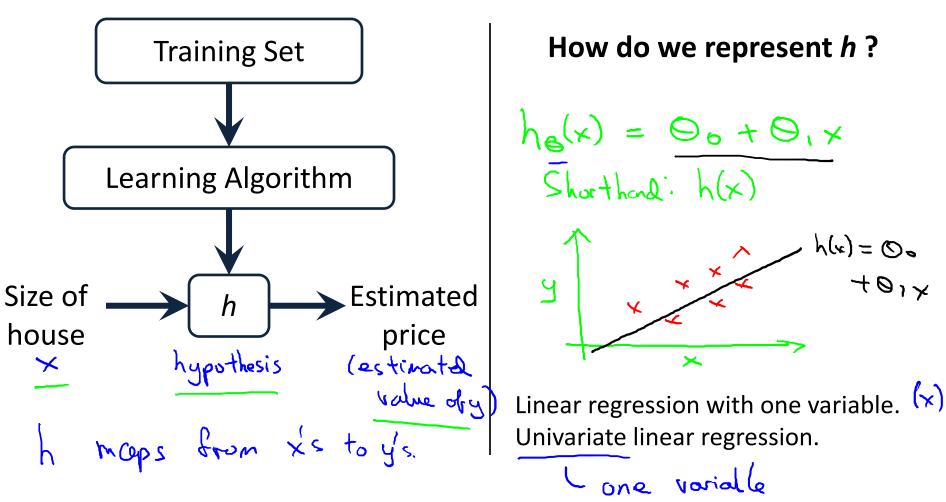
We use the slides from Professor Andrew Ng in Stanford University



| Training set of | Size in feet <sup>2</sup> (x) | Price (\$) in 1000's (y) |
|-----------------|-------------------------------|--------------------------|
| housing prices  | 2104                          | 460                      |
| (Portland, OR)  | 1416                          | 232                      |
|                 | 1534                          | 315                      |
|                 | 852                           | 178                      |
|                 | •••                           | •••                      |

Notation:

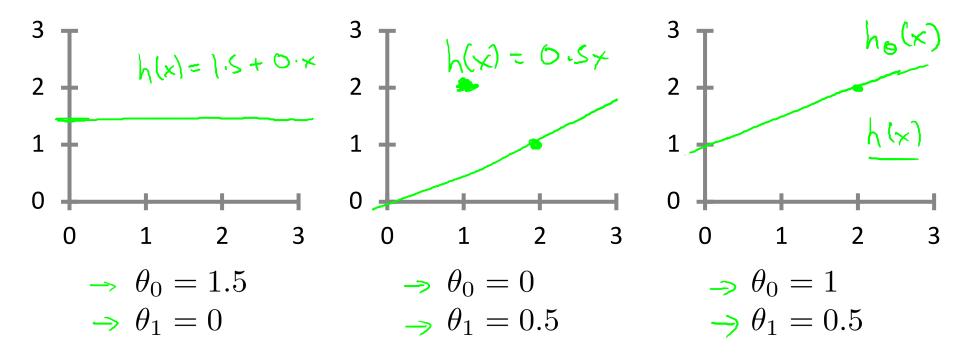
m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable

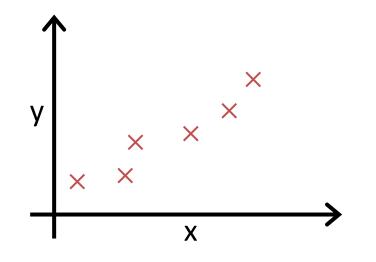


| Training Set | Size in feet <sup>2</sup> (x) | Price (\$) in 1000's (y) |
|--------------|-------------------------------|--------------------------|
| Hunnig Set   | 2104                          | 460                      |
|              | 1416                          | 232                      |
|              | 1534                          | 315                      |
|              | 852                           | 178                      |
|              |                               |                          |

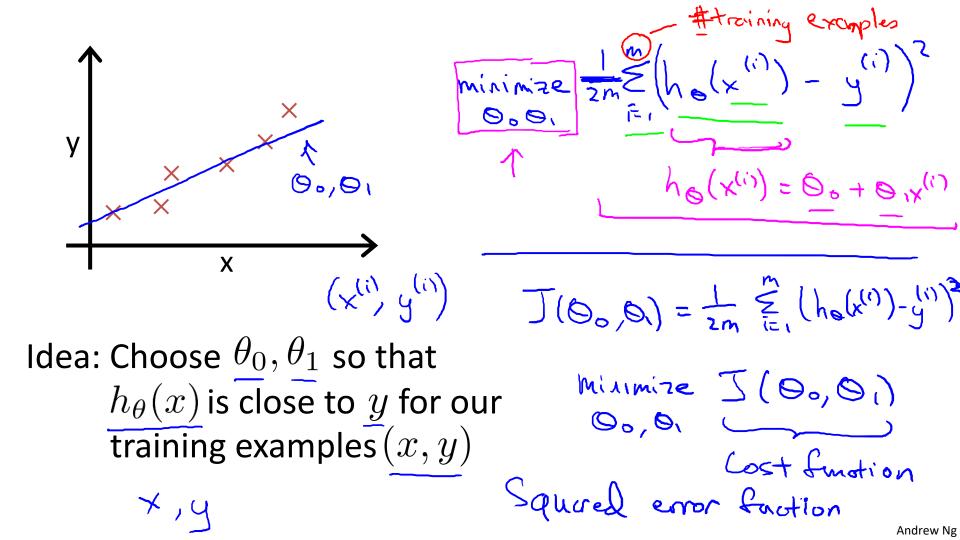
Hypothesis: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
  
 $\theta_i$ 's: Parameters  
How to choose  $\theta_i$ ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

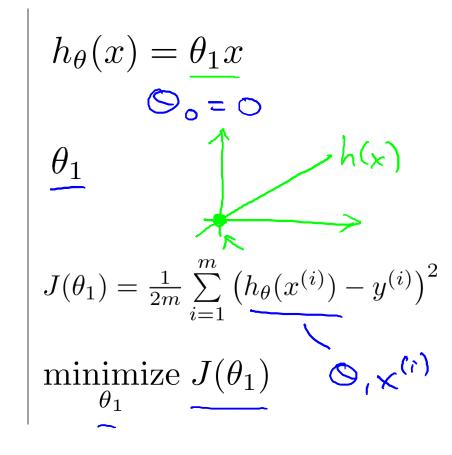




Idea: Choose  $\theta_0, \theta_1$  so that  $h_{\theta}(x)$  is close to y for our training examples (x, y)



## Simplified



Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

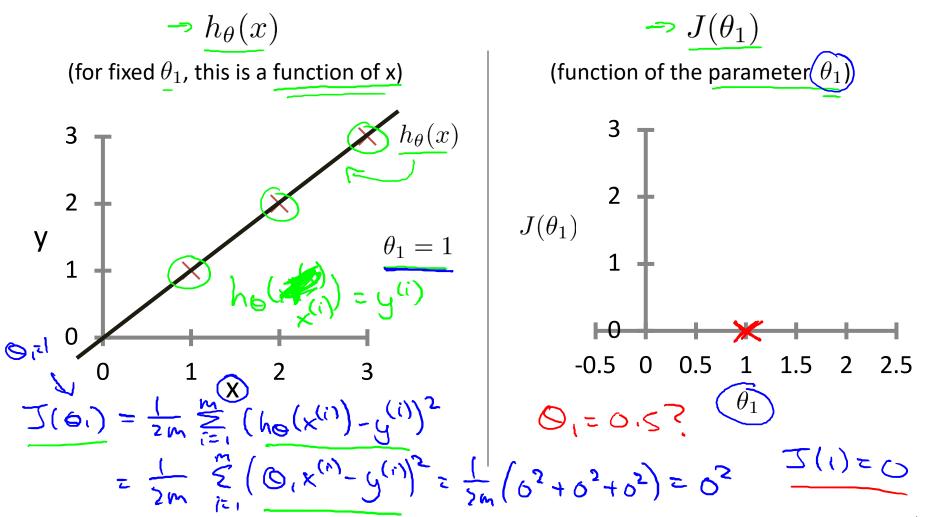
 $\theta_0, \theta_1$ 

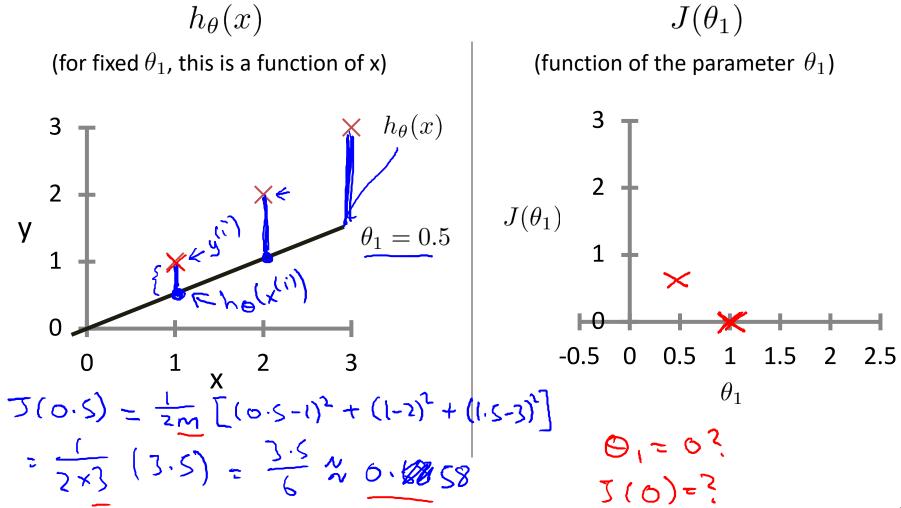
Cost Function:

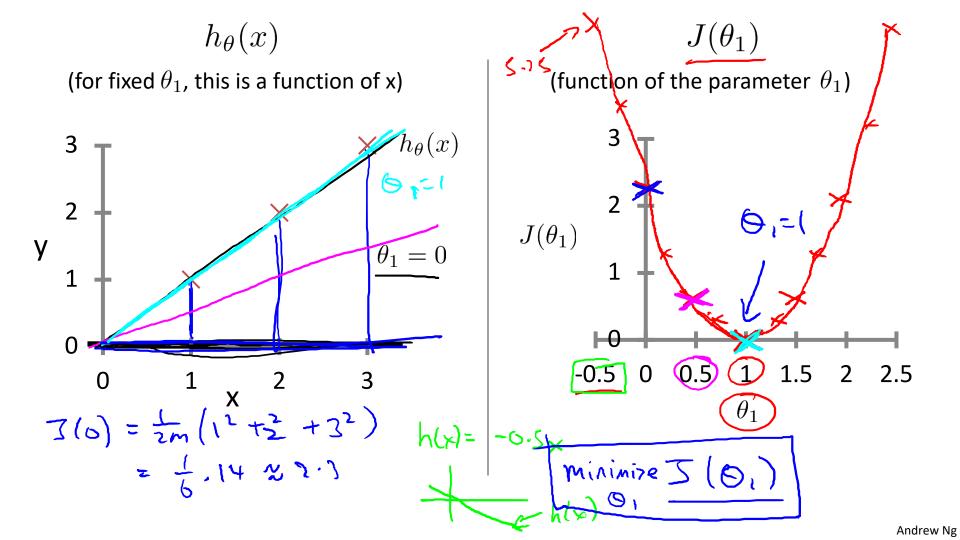
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

h(x)

Goal: minimize  $J(\theta_0, \theta_1)$ 







Hypothesis: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

]

.

Parameters:  $\theta_0$ 

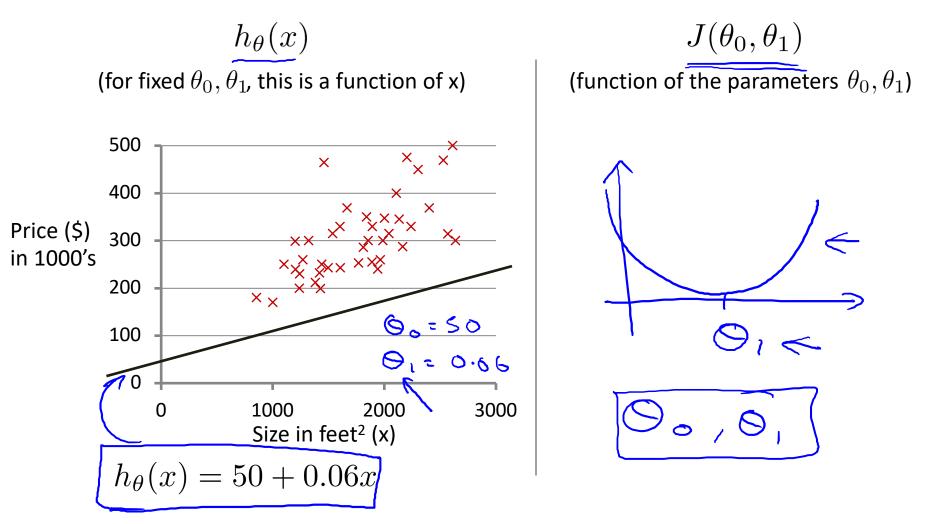
$$heta_0, heta_1$$

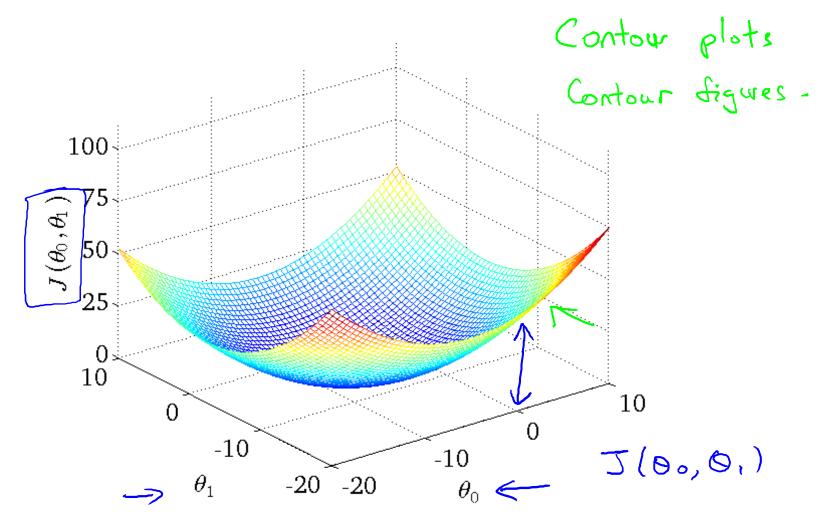
Cost Function:

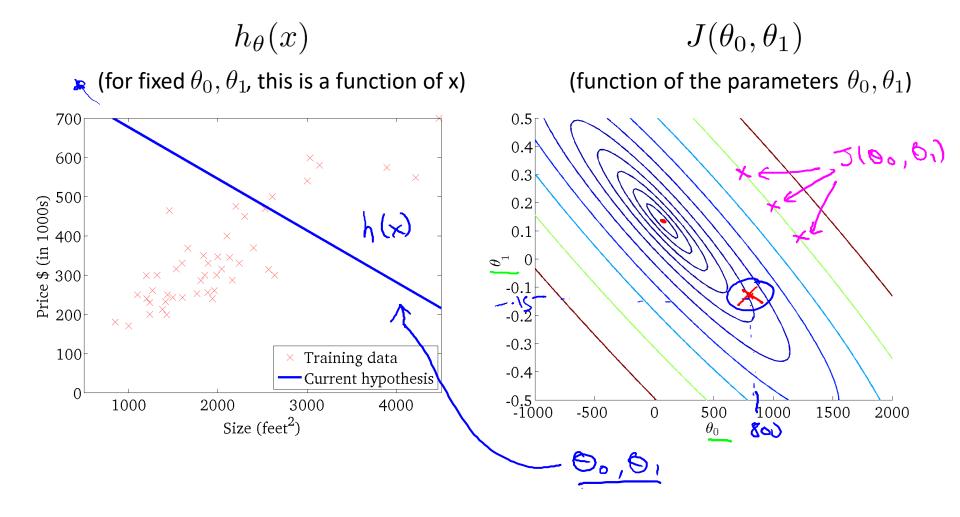
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

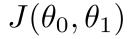
$$\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$$





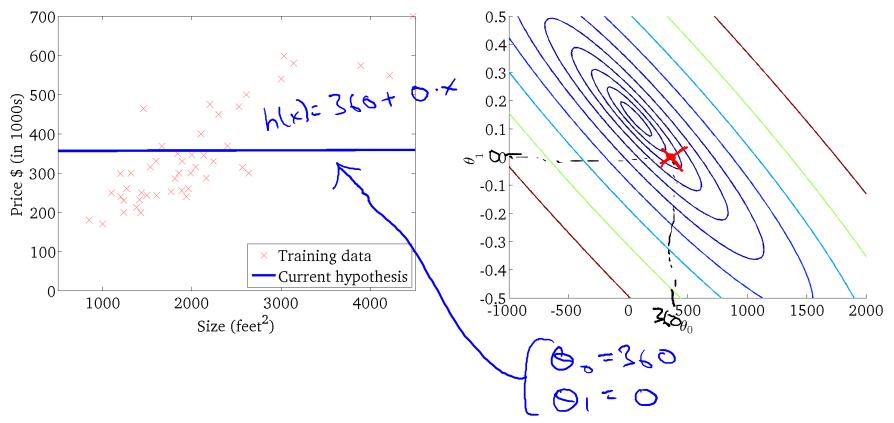


 $h_{\theta}(x)$ 



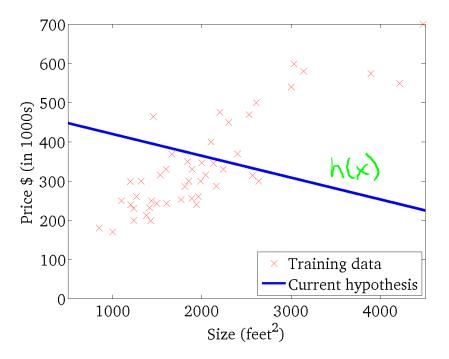
(for fixed  $\theta_0, \theta_1$ , this is a function of x)





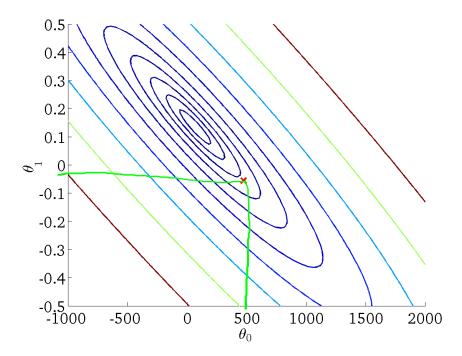
 $h_{\theta}(x)$ 

(for fixed  $\theta_0, \theta_1$ , this is a function of x)



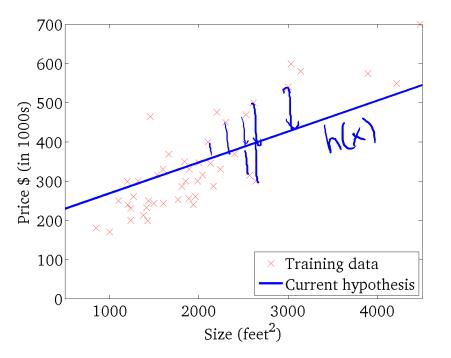
 $J(\theta_0, \theta_1)$ 

### (function of the parameters $heta_0, heta_1$ )



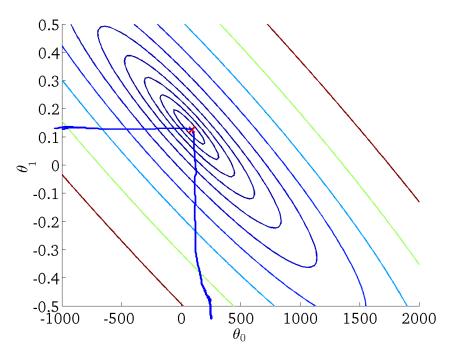
 $h_{\theta}(x)$ 

(for fixed  $\theta_0, \theta_1$ , this is a function of x)



$$J(\theta_0, \theta_1)$$

(function of the parameters  $\theta_0, \theta_1$ )

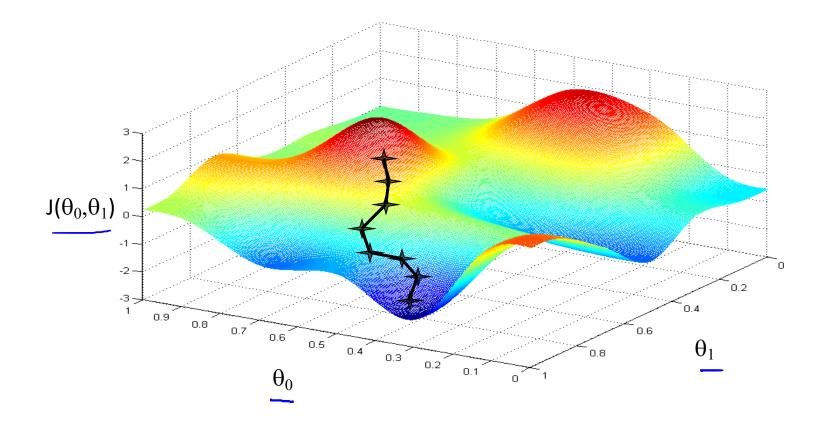


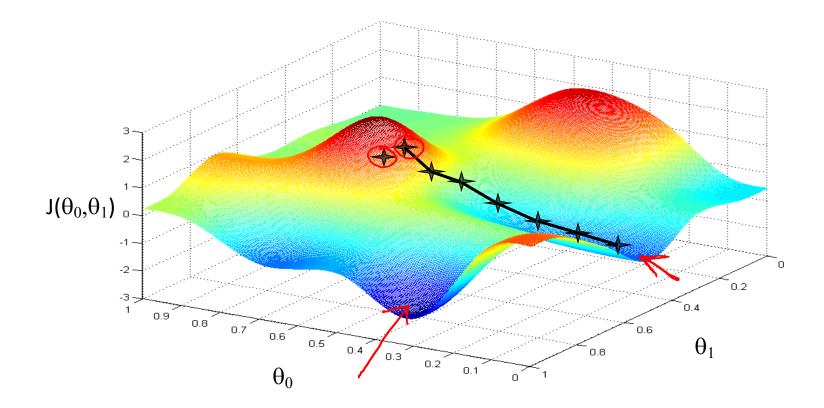
Have some function 
$$J(\theta_0, \theta_1) = \mathcal{I}(\Theta_0, \Theta_1, \Theta_2, \dots, \Theta_n)$$
  
Want  $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1) = \min_{\Theta_0, \dots, \Theta_n} \mathcal{I}(\Theta_0, \dots, \Theta_n)$ 

## **Outline:**

- Start with some  $\theta_0, \theta_1$  (Say  $\Theta_0 = 0, \Theta_1 = 0$ )
- Keep changing  $\underline{\theta_0}, \underline{\theta_1}$  to reduce  $\underline{J(\theta_0, \theta_1)}$

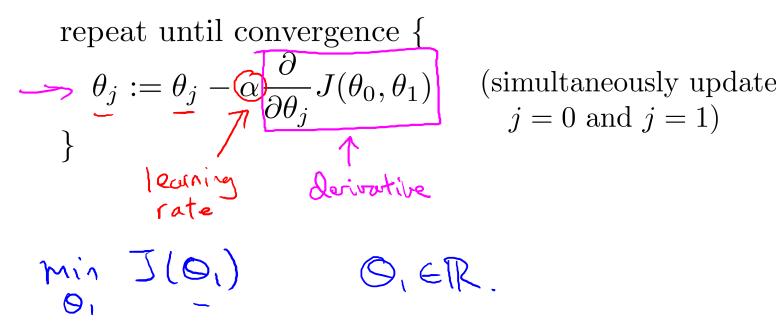
until we hopefully end up at a minimum



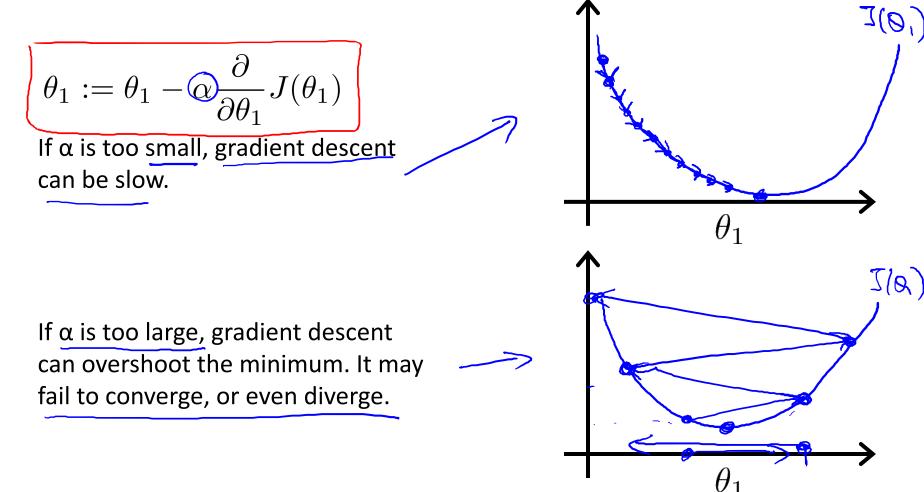


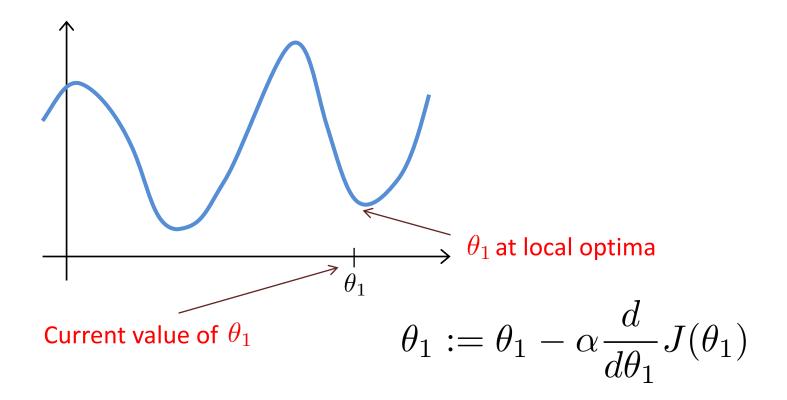
$$\begin{array}{c} \text{ Assignment} \\ \text{ Assignment} \\ \text{ Correct: Simultaneous update} \\ \text{ consigned} \\ \text{ con$$

## **Gradient descent algorithm**

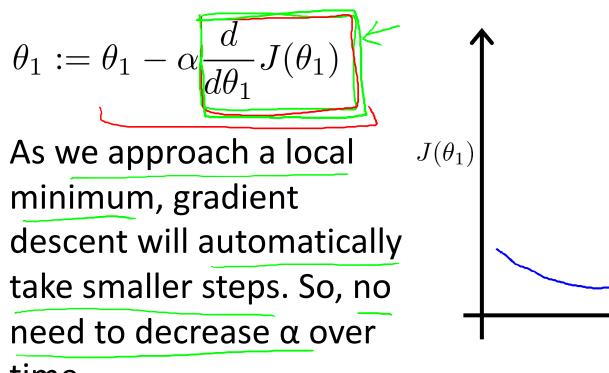


$$\begin{array}{c}
 J(0,) & (0, eR) \\
 J(0, eR) & (0, eR) \\
 J(0,$$





Gradient descent can converge to a local minimum, even with the learning rate  $\alpha$  fixed.



time.

 $\theta_1$ 

## Gradient descent algorithm

repeat until convergence {  $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{\partial \Theta_{j}} \underbrace{\lim_{\substack{z_{m} \in I \\ i \in I}} \underbrace{\lim_{\substack{z_{m} \in I \\ i \in I \\ i \in I}} \underbrace{\lim_{\substack{z_{m} \in I \\ i \in I \\ i \in I}} \underbrace{\lim_{\substack{z_{m} \in I \\ i \in I \\$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left( h_{\Theta} \left( \chi^{(i)} \right) - \chi^{(i)} \right)$$
$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left( h_{\Theta} \left( \chi^{(i)} \right) - \zeta^{(i)} \right). \chi^{(i)}$$

Gradient descent algorithm  
repeat until convergence {  

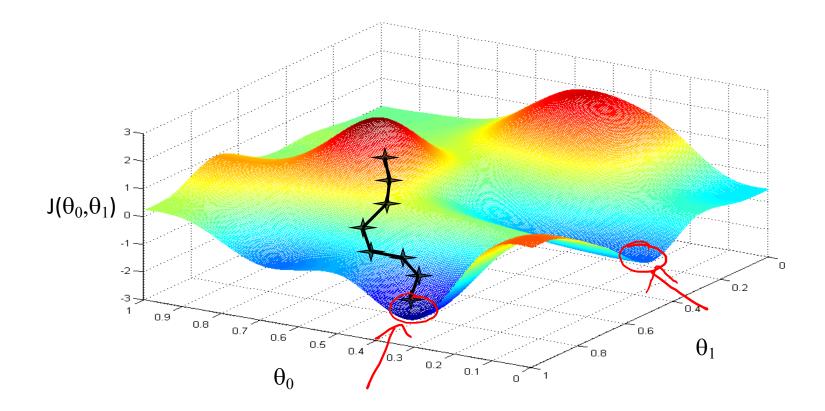
$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

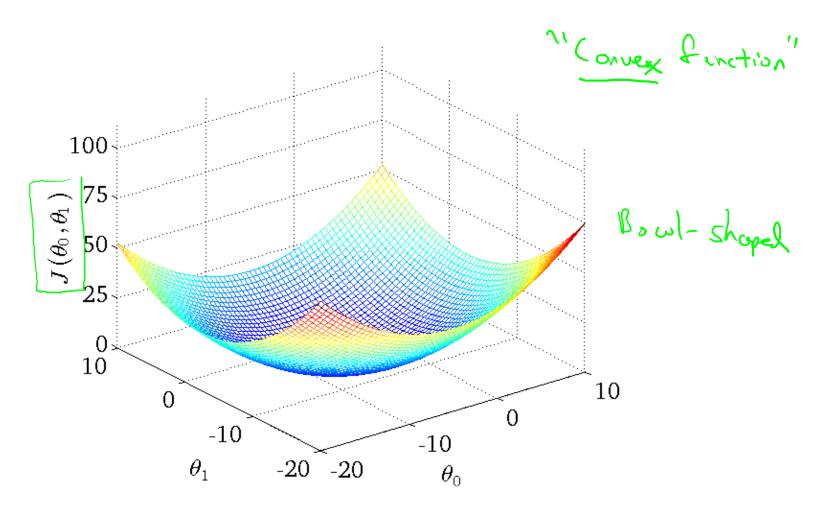
$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

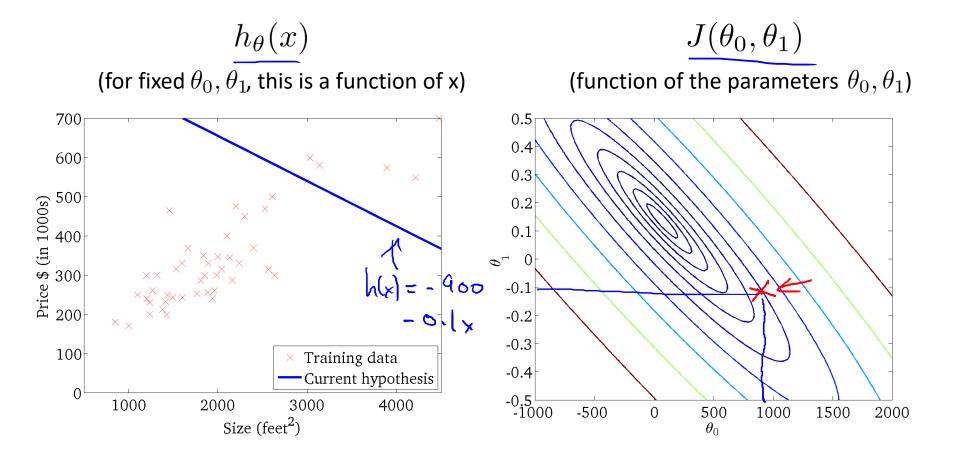
$$g_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

$$g_{2} := 0$$

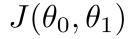
$$g_{1} := 0$$



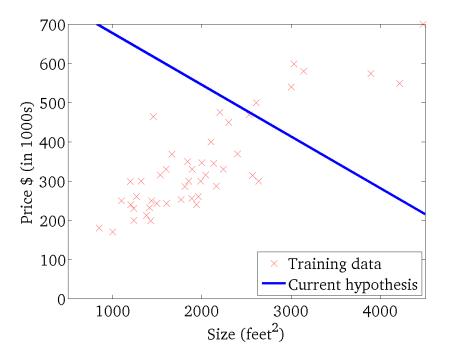




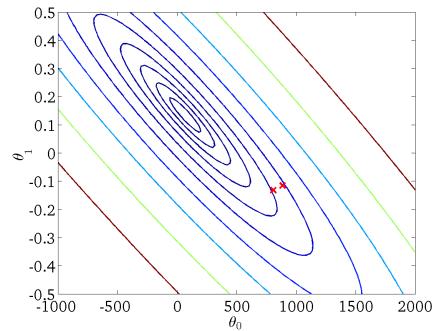
 $h_{\theta}(x)$ 



(for fixed  $\theta_0, \theta_1$ , this is a function of x)



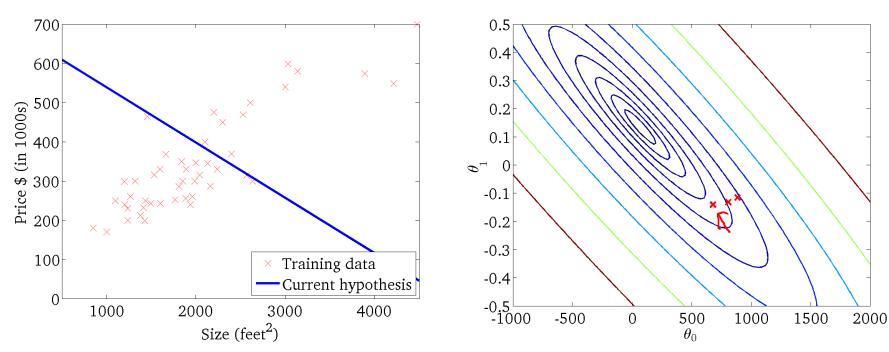
(function of the parameters  $\theta_0, \theta_1$ )



 $h_{\theta}(x)$ 

 $J(\theta_0, \theta_1)$ 

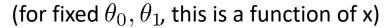
(function of the parameters  $\theta_0, \theta_1$ )

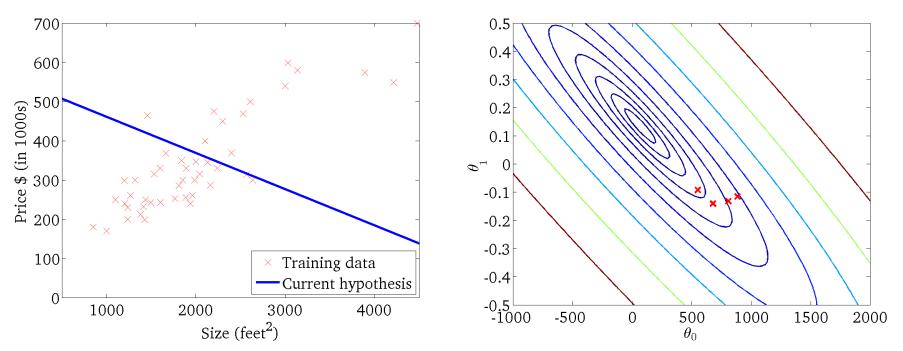


 $h_{\theta}(x)$ 

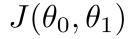
 $J(\theta_0, \theta_1)$ 

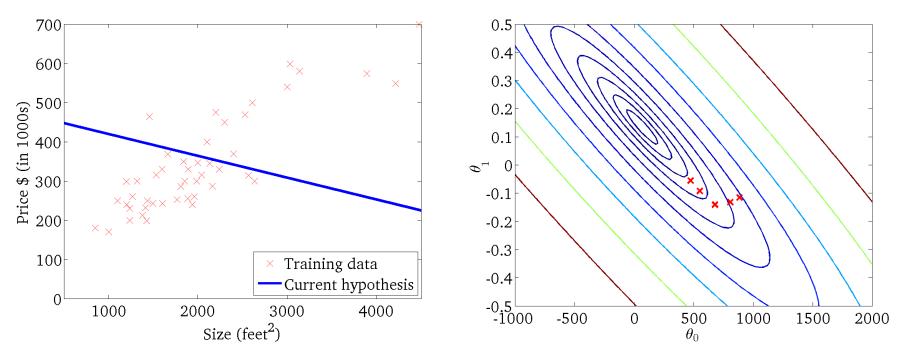
(function of the parameters  $\theta_0, \theta_1$ )



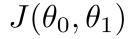


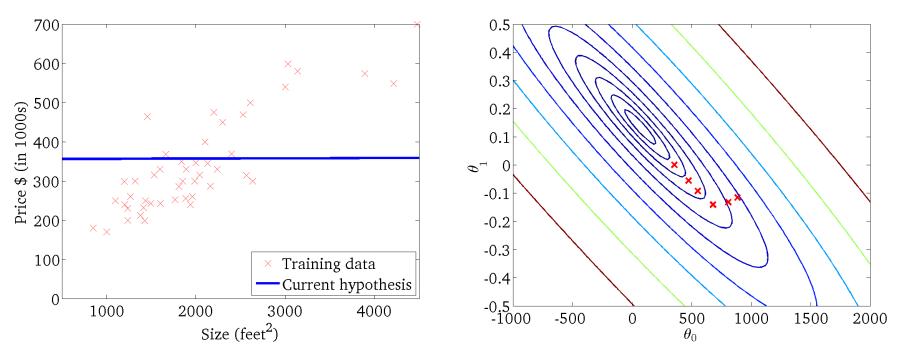
 $h_{\theta}(x)$ 



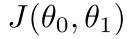


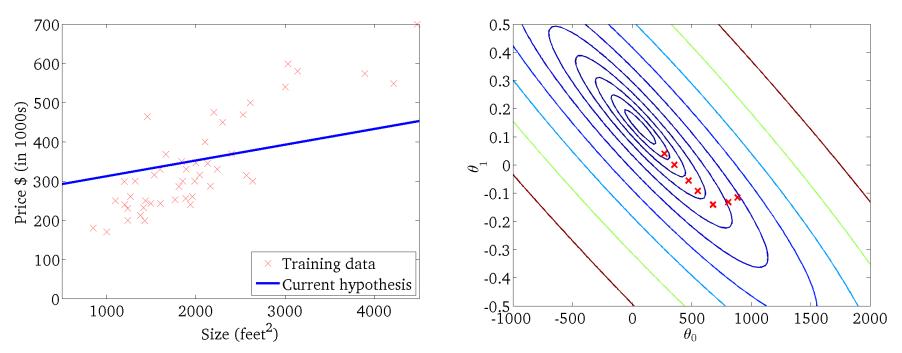
 $h_{\theta}(x)$ 



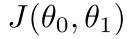


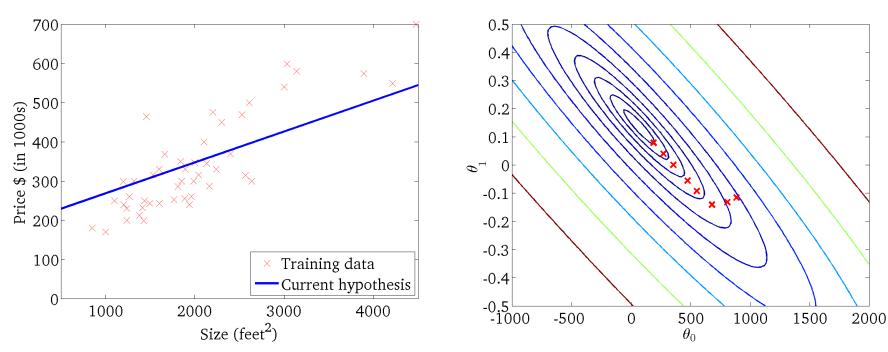
 $h_{\theta}(x)$ 





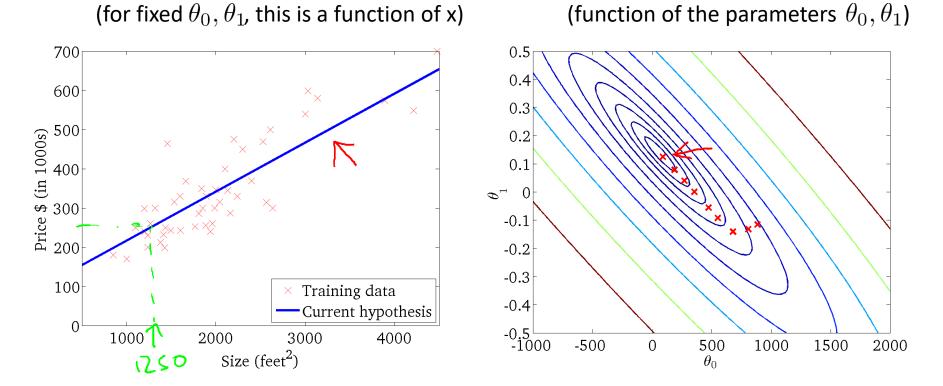
 $h_{\theta}(x)$ 





 $h_{\theta}(x)$ 

 $J(\theta_0, \theta_1)$ 



# "Batch" Gradient Descent

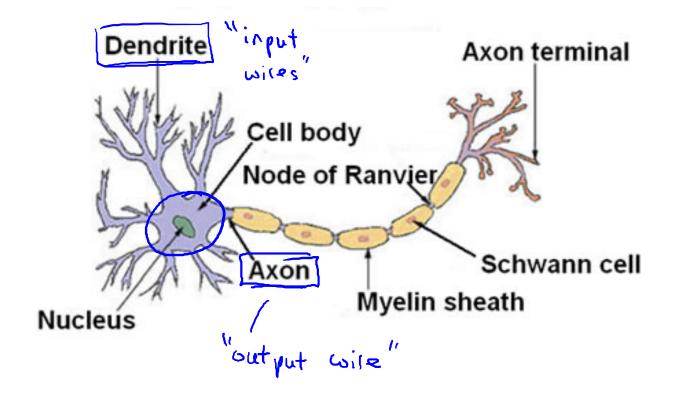
# "Batch": Each step of gradient descent uses all the training examples.

 $\sum_{i=1}^{n} \left(h_{o}(x^{(i)}) - y^{(i)}\right)$ 

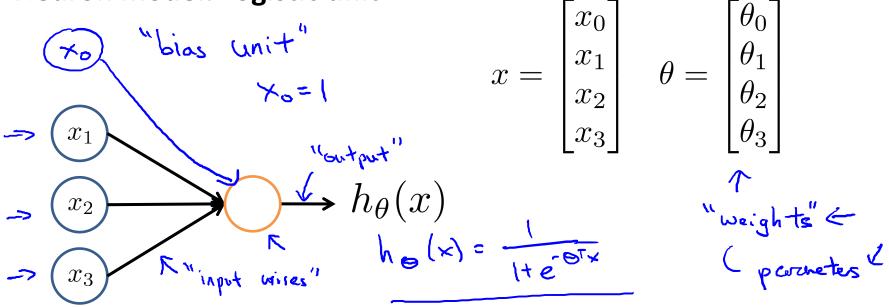
# **Neural Networks**

- Origins: Algorithms that try to mimic the brain.
- -> Was very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications

#### Neuron in the brain



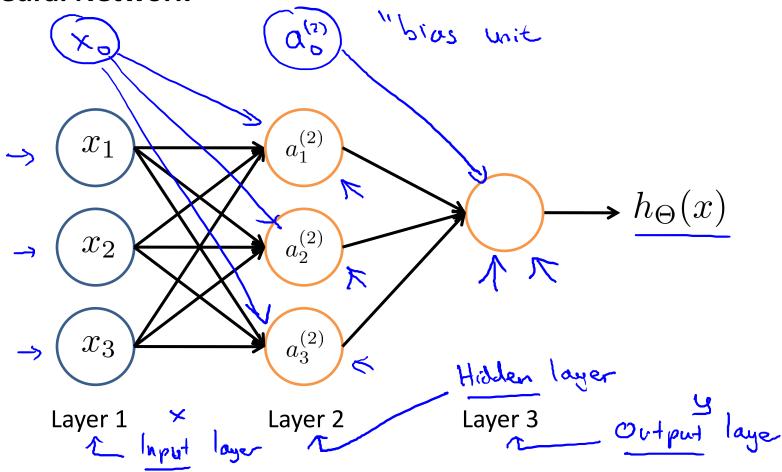
Neuron model: Logistic unit

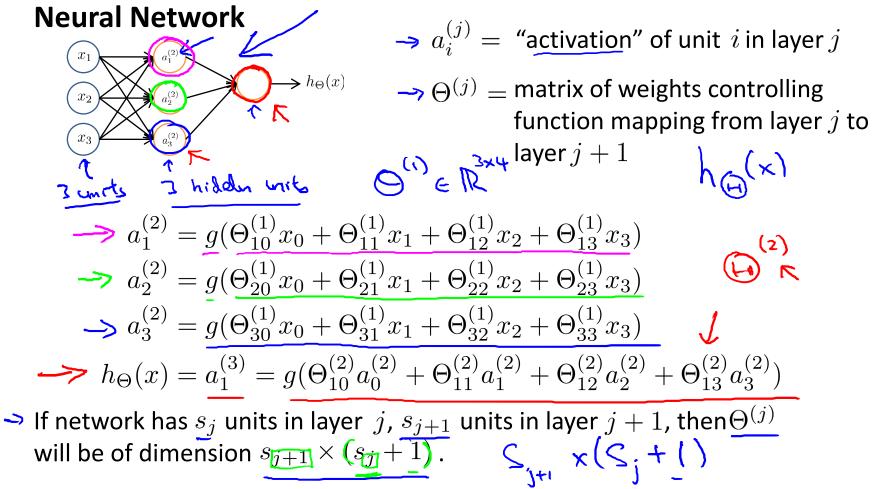


Sigmoid (logistic) activation function.

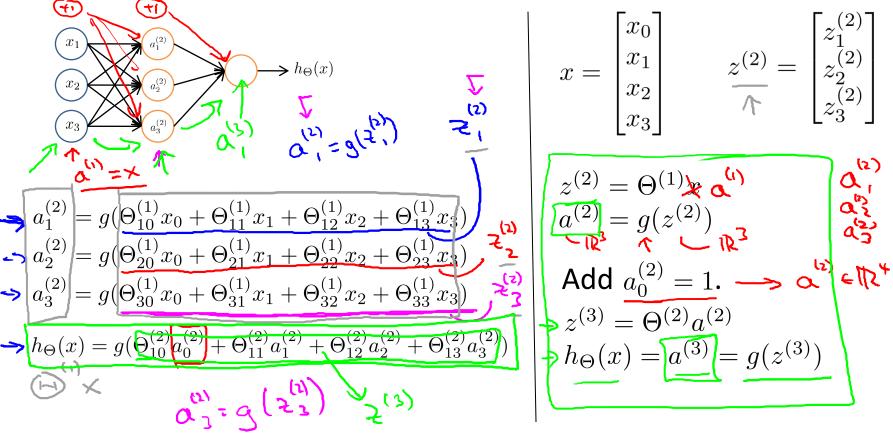
$$g(z) = \frac{1}{(4e^{-2})}$$

#### **Neural Network**

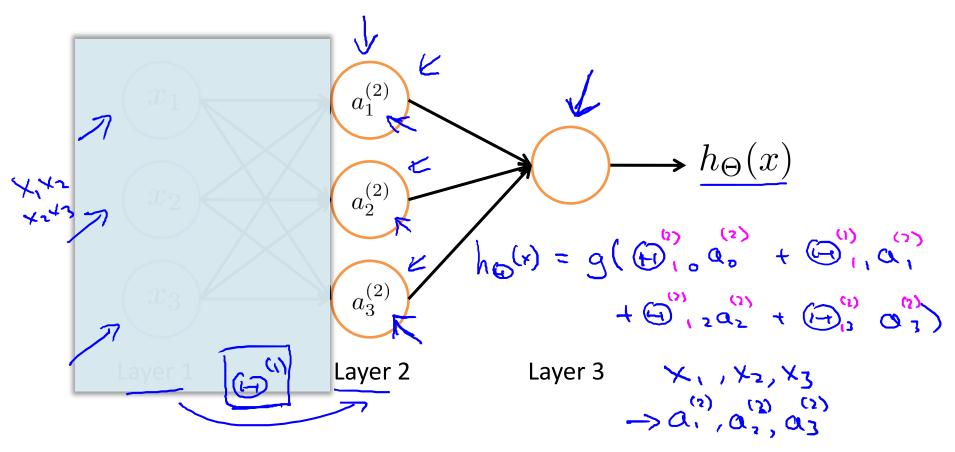




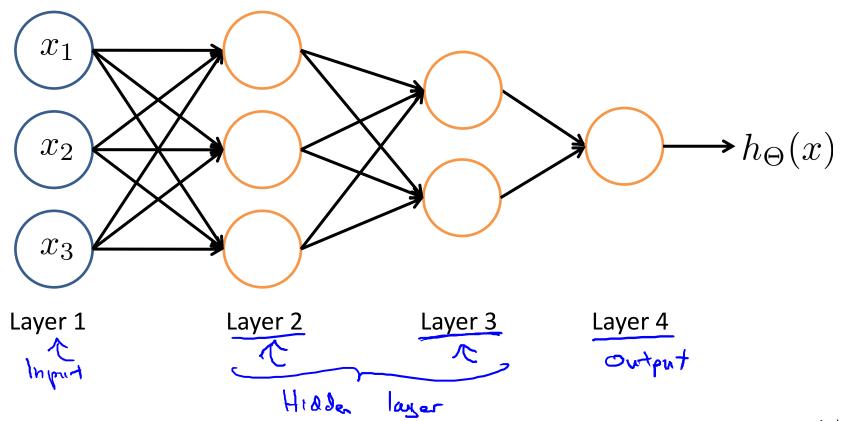
#### 



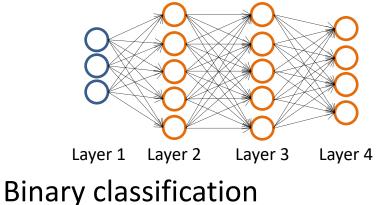
#### **Neural Network learning its own features**



#### **Other network architectures**



## Neural Network (Classification)



y = 0 or 1

1 output unit

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

L = total no. of layers in network

 $s_l = \max l$  no. of units (not counting bias unit) in layer l

$$\underbrace{ \textit{Multi-class classification}}_{y \in \mathbb{R}^{K} \textit{ E.g. } \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \\ \textit{pedestrian car motorcycle truck} }$$

## K output units

#### Training a neural network

Pick a network architecture (connectivity pattern between neurons)

-> No. of input units: Dimension of features  $\underline{x^{(i)}}$ 

-> No. output units: Number of classes

Reasonable default: 1 hidden layer, or if >1 hidden layer, have same no. of hidden units in every layer (usually the more the better)

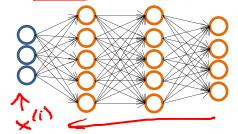
[5]N

$$y^{2} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} B \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} E$$

# Training a neural network

compute à Dan J(E).

- -> 1. Randomly initialize weights
- $\rightarrow$  2. Implement forward propagation to get  $h_{\Theta}(x^{(i)})$  for any  $x^{(i)}$
- $\rightarrow$  3. Implement code to compute cost function  $J(\Theta)$
- -> 4. Implement backprop to compute partial derivatives  $\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta)$
- $\rightarrow$  for i = 1:m {  $(\chi^{(i)}, y^{(i)})$   $(\chi^{(2)}, y^{(2)})$   $(\chi^{(m)}, y^{(m)})$ 
  - → Perform forward propagation and backpropagation using example  $(x^{(i)}, y^{(i)})$ (Get activations  $a^{(l)}$  and delta terms  $\delta^{(l)}$  for l = 2, ..., L).



## Training a neural network

- → 5. Use gradient checking to compare  $\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta)$  computed using backpropagation vs. using numerical estimate of gradient of  $J(\Theta)$ .
  - Then disable gradient checking code.
- → 6. Use gradient descent or advanced optimization method with backpropagation to try to minimize  $J(\Theta)$  as a function of parameters  $\Theta$