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Abstract— Wearable technology permeates every aspect of
our daily life increasing the need of reliable and interpretable
models for processing the large amount of biomedical data.
We propose the EDA-Gram, a multidimensional fingerprint
of the electrodermal activity (EDA) signal, inspired by the
widely-used notion of spectrogram. The EDA-Gram is based
on the sparse decomposition of EDA from a knowledge-driven
set of dictionary atoms. The time axis reflects the analysis
frames, the spectral dimension depicts the width of selected
dictionary atoms, while intensity values are computed from
the atom coefficients. In this way, EDA-Gram incorporates the
amplitude and shape of Skin Conductance Responses (SCR),
which comprise an essential part of the signal. EDA-Gram is
further used as a foundation for signal-specific feature design.
Our results indicate that the proposed representation can accen-
tuate fine-grain signal fluctuations, which might not always be
apparent through simple visual inspection. Statistical analysis
and classification/regression experiments further suggest that
the derived features can differentiate between multiple arousal
levels and stress-eliciting environments for two datasets.

I. INTRODUCTION
Wearable devices are increasingly being embedded into

our everyday life spanning a wide range of applications
from health and well-being, to education, security and
human-computer interaction [1]. This results in a tremendous
amount of physiological data, for which reliable processing
and interpretation are essential [2]. Along with data-driven
methods, knowledge-based algorithms are equally important
towards representing and interpreting physiological signals
in a meaningful way. Visualization and informative signal
measures can further assist with analysis and exploration.

Electrodermal activity (EDA) is one of the most commonly
used physiological signals [3]. It represents the activation of
the sympathetic “fight or flight” nervous system, increasing
due to stress, emotional arousal, and/or attention [3], [4].
The association of EDA to various behavioral and patho-
logical indices and its relatively non-intrusive data capture
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ability underscore its usefulness to several mobile sensing
applications [5]. EDA is decomposed into tonic and phasic
parts. The former captures the signal levels and is called skin
conductance level (SCL), while the latter reflects the fluctu-
ations superimposed onto the signal trend, known as skin
conductance responses (SCR). SCRs depict sharp increase
and slow recovery and are commonly studied in several
psychophysiological settings [3], [4].

Previous approaches on EDA representation have used
least-squares fit methods [6], generative causal models [7],
[8], as well as convex optimization techniques [9]. Other
studies have designed EDA features considering signal varia-
tions within parameterized temporal windows [10] and time-
series approximations [11]. Most of these models impose
restrictive constraints on the SCR shape, or take the SCR
variability implicitly into account, highlighting the need to
explore the finer details of the EDA structure.

Taking these limitations into account, we propose an
interpretable model that considers the typical EDA shape
and incorporates a wide range of signal variations. We build
signal-specific dictionaries of tonic and phasic atoms from
which we decompose the signal with sparse representation
techniques [12], [13]. Based on this representation, we design
a multidimensional EDA fingerprint for visualization and
feature extraction pusposes. The “EDA-Gram” is created
similarly to a spectrogram in signal processing, in which the
horizontal axis captures the signal frames, the vertical di-
mension depicts the selected atom width, while the intensity
values are computed from the corresponding atom amplitude.
Thus it incorporates the SCR width and amplitude variations.
Measures of the EDA-Gram intensity are used as features
to describe the underlying signals. Results indicate that the
proposed features are able to discriminate between multiple
arousal and stress conditions in two datasets, signifying their
ability at capturing the fine-level variations of the EDA.

II. EDA-GRAM
A. Knowledge-Driven EDA Representation

Let xn∈<P be an analysis frame of length P from signal
x =

[
xT
1 . . .x

T
N

]T∈<PN . According to sparse represen-
tation theory, xn can be expressed as a small number of
atoms from the dictionary D∈<P×K , such that xn = Dcn,
where cn∈<K , ‖cn‖0 = L� K, are the atom coefficients.
The dictionary contains K1 tonic and K2 phasic atoms
(K=K1+K2) for the corresponding EDA components:

D =[φ1(t, ζ1), ..., φ1(t, ζK1), . . .

φ2(t,θ1), ..., φ2(t,θK2)] ∈ <P×(K1+K2)
(1)
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Fig. 1. EDA-Gram design. (a) Example of phasic dictionary atoms with phasic width (PW). (b) Histogram of PW values with the resulting phasic width
bands (PWB). (c) Input EDA. (d) Signal analysis frames (in solid blue line) and selected phasic atoms (in non-solid lines). (e) EDA-Gram.

TABLE I
Description of EDA-specific dictionary atoms and initial parameters.

Tonic Atoms

φ1(t, ζ) = Γ + ∆ · t
Γ ∈ {−20,−10, 1}
∆ ∈ {−0.01,−0.009, . . . ,

0, 0.01, 0.02, . . . , 0.1}
Phasic Atoms

φ2(t,θ) =
(
e−b(st−µ) − e−a(st−µ)

)
a ∈ {8, 14, 18}
b ∈ {10, 15, 20}

· u(t− µ)
µ ∈ {0, 10, 20, . . . , 150}
s ∈ {0.100, 0.105, . . . , 0.140}

u(t) = 1, t ≥ 0 and u(t) = 0, otherwise

Tonic atoms φ1(t, ζk)∈<2→<P , ζk = [Γk,∆k]T are mod-
elled with straight lines, where Γk, ∆k denote the off-
set and slope. Phasic atoms φ2(t,θk)∈<4→<P , θk =
[ak bk sk µk]T are appropriately designed through Bateman
functions [7] in order to match the SCR shape. Their param-
eters include the steepness of onset and recovery ak, bk, as
well as the time shift and scale µk, sk. The final dictionary
contains 63 tonic and 2790 phasic atoms to account for the
large variability of EDA fluctuations (Table I). Sparse de-
composition is performed with orthogonal matching pursuit
(OMP) because of its simplicity and effectiveness [14]. More
details on this EDA representation can be found in [12], [13].

B. EDA-Gram Design
Since EDA is represented from a set of parametric func-

tions, we can recover its structure in a knowledge-driven way.
We focus on SCR shape and occurrence, as these are related
to various psychophysiological conditions [3], [4] and can be

measured from the phasic atoms. An intuitive characteristic
of phasic atoms is their width ωk, k = 1, . . . ,K2, denoted as
phasic width (PW), and incorporating SCR rise and recovery
(Fig. 1a). Because of the large number of phasic atoms
in the dictionary (Section II-A), we group the PW values
through a histogram, such that each {ωk}K2

k=1 is assigned to a
band {Ωm}Mm=1, M�K2, called phasic width band (PWB).
Therefore PWBs correspond to the centers of the histogram
generated from the PW values (Fig. 1b).

An analysis frame is decomposed as xn = xntonic
+∑

k∈In ckφ(t,θk), where xntonic
is the reconstructed signal

from the tonic atoms, In = {i1, . . . , iL2} and cil 6= 0 (l∈In)
are the L2<L indices and coefficients of phasic atoms. Each
atom from set In is associated with coefficient cil and PWB
Ωil . Figs. 1c-d show an EDA signal, indicative analysis
frames, and the corresponding selected phasic atoms.

Inspired by the spectrogram, which is a signal repre-
sentation over time and frequency, the EDA-Gram can be
expressed as the time evolution of the EDA over the PWBs
{Ωm}Mm=1. The EDA-Gram Sx(n,m) for signal xn is:

Sx(n,m) =
∑

i∈Inm

ci∗ , n = 1, . . . , N, m = 1, . . . ,M

Inm = {il : il ∈ In ∧ ∃m s.t. Ωm = Ωil}
(2)

where Inm includes the indices of the selected phasic atoms
for the nth time frame that belong to the mth PWB. The
horizontal axis of EDA-Gram corresponds to time (i.e. the
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nth frame), the vertical axis to PWB (i.e. Ωm), while
intensity values are computed from the sum of coefficients
of selected atoms over each PWB (Fig. 1e).
C. EDA-Gram Feature Extraction

EDA-Gram is a compressed multidimensional representa-
tion of EDA that offers a foundation for deriving appropriate
features. We extract two types of features that capture the
mean intensity and the variability of intensity across PWBs:

SInt
x =

1

NM

N∑
n=1

M∑
m=1

Sx(n,m) (3)

SV ar
x =

1

N

N∑
n=1

√√√√ 1

M

M∑
m′=1

(
Sx(n,m)− S̄x(n)

)2
(4)

where S̄x(n) = 1
M

∑M
m=1 Sx(n,m) is the mean intensity

over all PWBs for the nth frame. Large values of SInt
x denote

frequent SCRs of high amplitude, while large SV ar
x indicates

high SCR variability across the signal. We will explore how
the proposed features vary in relation to different arousal
levels and environmental conditions.

III. EXPERIMENTS
In the following experiments, EDA representation was

derived with analysis window of 10 sec and L=5 selected
atoms. EDA-Gram was designed with M=8 PWBs.
A. Data Description

We validate our approach with two datasets. The first
is the publicly available dataset for emotion analysis using
physiological signals (DEAP) [15], which investigates the
relation of human physiology to multimedia. DEAP includes
40 one-minute recordings from 32 individuals. We use the
self-reported arousal measures, which take continuous values
between 1-9, as these are closely related to EDA [3], [4].
EDA was collected from the index and middle finger and was
downsampled to Fs=32Hz, which consists a typical practice.

Motivated by the challenges children with special health-
care needs face during oral care [16], the second dataset was
collected in order to examine the impact of a sensory adapted
dental environment (SADE) on the behavioral distress, phys-
iological stress, pain, and sensory discomfort of children with
autism spectrum disorders (ASD). Specifically, the SADE
modified the dental room with respect to visual, auditory,
and tactile stimuli and was compared to a regular dental
environment (RDE) in children with ASD and their typically
developing (TD) peers [17]. Our data (DENTISTRY) include
EDA recordings from children with ASD (n=22) and their
TD peers (n=22), 6-12 years of age, during the dental pro-
phylaxis (cleaning). Each child underwent a dental cleaning
in both the RDE and SADE, which will be compared in
terms of EDA measures. EDA was collected with a sampling
frequency Fs=31.25Hz from the index and middle finger.
B. Baseline Features

We compare the EDA-Gram features with two baselines.
The first includes the commonly used mean SCL and SCR
frequency [3], [4] (SCLM and SCRF ), that capture the
average signal level and number of SCRs over a given time.
For the second baseline, we compute the power spectral
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Fig. 2. Example of EDA signals and EDA-Grams for two subjects during
the regular (RDE) and sensory adapted (SADE) dental environments.

density (PSD) 16 frequency bands (0-2Fs Hz). We further
extract the average PSD over time and frequency (PSDInt),
as well as its mean standard deviation over frequency bands
(PSDV ar), similarly to EDA-Gram features (Section II-C).

C. Visualization
EDA-Grams show increased intensity over regions of large

tonic levels and high phasic activity (Fig. 2). RDE samples
from the DENTISTRY data depict larger SCL and SCR
frequency compared to SADE (Fig. 2a), which is reflected in
higher EDA-Gram intensity values (Fig. 2a,b). It is notewor-
thy that although Participant 2 depicts EDA signals within the
same range for the two environments, there are differences
in the corresponding waveforms, that are also captured by
the EDA-Grams. Similar observations were made for DEAP.

D. Statistical Analysis
We explore the relation between arousal and EDA features

in DEAP through a linear mixed-effects model (LME) [18].
LME addresses independence assumption violations that
could occur from multiple samples per participant. It models
the self-reported arousal score Aij from the ith individual
during the jth trial based on EDA feature Fij , a grand-mean
γ00, an individual-specific mean u0j , and a residual rij , such
that Aij=γ00+u0j+γ10Fij+rij , where γ10 reflects the relation
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TABLE II
LINEAR MIXED-EFFECTS MODEL (LME) FOR PREDICTING SELF-

REPORTED AROUSAL (DEAP) FROM EDA FEATURES AND TWO-WAY

ANOVA COMPARING DIFFERENCES ON EDA FEATURES BETWEEN

DENTAL ENVIRONMENTS AND CLEANING TASKS (DENTISTRY).

DEAP DENTISTRY

Feature
LME Estimate ANOVA P-value

Intercept Independent Environment Outcome
γ00 γ10 (RDE/SADE) (ASD/TD)

SCLM 0.94∗ 0.05∗ <0.01 <0.05
SCRF 0.42∗ 0.23∗ <0.11 <0.05
PSDInt 0.94∗ 0.05∗ <0.01 0.05
PSDV ar 0.59∗ 0.08 0.60 0.80

SIntx 0.25† 0.33∗ <0.05 0.06
SV arx 0.25† 0.33∗ <0.05 0.31

†p < 0.05, *p < 0.01

TABLE III
PEARSON’S CORRELATION BETWEEN REAL AND PREDICTED AROUSAL

VALUES (DEAP) AND CLASSIFICATION ACCURACY BETWEEN REGULAR

AND SENSORY ADAPTED DENTAL ENVIRONMENTS (DENTISTRY).

Feature DEAP - Correlation DENTISTRY - UA (%)
SCLM 0.090∗ 52.3
SCRF 0.088∗ 47.2

PSDInt 0.080† 52.3
PSDV ar 0.042† 44.3

SIntx 0.152∗ 59.1
SV arx 0.127∗ 65.3

†p < 0.05, *p < 0.01

Aij-Fij . Results indicate significant association between all
considered EDA measures and the arousal scores, which is
increased for the EDA-Gram features (Table II).

For the DENTISTRY data, we examine the effect of dental
environment on EDA features using a two-way ANOVA,
whose independent variables include the dental environment
(RDE/SADE) and outcome (ASD/TD). Results suggest sig-
nificant differences between RDE and SADE (Table II).

E. Regression and Classification
Regression and classification were performed with a leave-

one-subject-out cross-validation in order to see how features
are generalized on unseen data. Linear regression was used
for the DEAP dataset to predict the continuous arousal levels
from EDA features, while K-nearest neighbor (K-NN, K=13)
classification was performed for the DENTISTRY data to
classify between RDE and SADE. Feature dimensionality is
one for all cases and chance classification accuracy is 50%.
Results suggest better discriminability of the EDA-Gram
features compared to the considered baselines (Table III).

IV. DISCUSSION
This paper introduces the EDA-Gram, a multidimensional

representation for fingerprinting the EDA. Results indicate
that the proposed approach can capture and accentuate fine-
grain signal fluctuations, not always apparent from traditional
signal inspection. Such visualizations can assist in clinical
applications, therefore future work will evaluate those with
human annotators for usefulness and easiness of operation.

Experiments suggest that the proposed features can be
more informative than the baseline. This might be due to
the fact that EDA-Gram is able to better incorporate signal
changes, that are concealed from simple averaging and might

not be as effectively captured by the PSD. Also the proposed
EDA-specific representation can group them in a meaningful
way, i.e. based on PWB values. Future work will examine the
association of each PWB to psychophysiological predictors.

V. CONCLUSIONS
We propose the EDA-Gram for visualizing EDA signals

and extracting meaningful features. It is created based on
the sparse decomposition of EDA with knowledge-driven
dictionaries that capture the tonic and phasic signal com-
ponents. EDA-Gram is a multidimensional representation,
in which the x-axis denotes time, the y-axis reflects the
phasic EDA characteristics through the PWB space, while
the intensity is measured from the amplitude of the selected
atoms. Visualization and analysis indicate the ability of EDA-
Grams and the derived features to differentiate between
multiple arousal conditions and environmental effects in two
datasets outperforming the considered baseline metrics.
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