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ABSTRACT
Object recognition is one of the challenging tasks in com-
puter vision and the problem becomes increasingly difficult
when the image categories are visually correlated among
themselves i.e. they are visually similar and only fine differ-
ences exist among the categories. This paper has a two-fold
objective which involves organization of the image categories
in a hierarchical tree like structure using self tuning spectral
clustering for exploiting the correlations among them. The
organization phase is followed by a node specific large mar-
gin nearest neighbor classification scheme, where a Mahalno-
bis distance metric is learnt for each non-leaf node. Further a
procedure for hyperparameters selection has been discussed
w.r.t two strategies i.e. grid search and Bayesian optimiza-
tion. The proposed algorithm’s effectiveness is tested on
selected classes of the popular Imagenet dataset.

CCS Concepts
•Computing methodologies → Object recognition;
Supervised learning by classification; Cluster analysis;

Keywords
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1. INTRODUCTION
Object recognition is a difficult task in the computer vi-

sion domain due to wide variations in the pose, shape and
color. Even though humans are able to recognize multi-
tude of objects inspite of these variations , accurate object
recognition based on algorithms is a formidable task. The
problem of object recognition is more challenging when the
objects from different categories are visually similar to each
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Figure 1: (a) Sample image of the margay category (b) Sam-
ple image of the cat category (c) Sample image of the moni-
tor category (d) Sample image of the computer screen cate-
gory. High degree of visual similarity exists between images
(a) and (b). Also images (c)and (d) are also visually similar.
Image courtesy: Imagenet database[4]

.

other. For example, the cat category in Imagenet [4] when
compared with computers is radically different but when
compared with margay(a form of wild cat native to Central
America ) the differences are very subtle.

In this paper we present an novel approach of combining
both self tuning spectral clustering and large margin nearest
neighbor algorithms for classifying visually correlated cate-
gories. Since our goal is to automatically determine the
hierarchy among the categories, the self tuning variant is
taken into account because of its ability to determine the
number of clusters based on structure of eigenvectors of the
normalized affinity matrix. Further the second objective in-
volves learning of a Mahalnobis distance metric at each non
leaf node of the hierarchical tree like strucure.

The distance metrics thus obtained are utilized in the
energy based classification scheme of a test sample, which
occurs in a top-down fashion, starting from root to a leaf
node. The selection of the hyperparameters is performed
using both grid search and Bayesian optimization, where
both grid search and Bayesian optimization are applied on
the entire tree structure.

Experiments have been performed on the popular bench-
mark i.e. Imagenet database, where two groups of visually
similar categories, which are highly distinct from each other
are considered. Results have been compared with state of



the art algorithms like jDL [20], IMDL [20], FDDL [17], Sc-
SPM [16], DKSVD [19] .

The rest of the paper is organized as follows. Section 2
introduces the works on different feature extraction schemes
and object recognition. In Section 3 the Large Margin Near-
est neighbor classification scheme has been detailed. Sec-
tion 4 gives a brief idea about Self Tuning Spectral Clus-
tering with specific emphasis on scale and cluster number
determination. Section 5 includes the details of our pro-
posed algorithm HSpecLMNN where the subsections include
the methods for hierarchical organization of the image cat-
egories, node specific large margin nearest neighbor scheme
and a top-down energy based classification scheme, respec-
tively. Section 6 details the experimental setup including the
features used, hyperparameter selection schemes and com-
parison with other algorithms, followed by conclusions in
section 7.

2. RELATED WORK
The success of object recognition algorithms can be at-

tributed to different state of the art feature extraction schemes
which are currently in use. Most common technique involves
dense sampling of the SIFT [11] descriptors followed by or-
derless representation in a BOW model [3].This BOW model
has shown to be quite effective in certain object recognition
tasks like PASCAL VOC challenge by Everingham [6] and
scene recognition by Fei-Fei[7]. Since BOW is an orderless
representation of an image Lazebnik extended it further by
computing a spatial pyramid representation of the image
and concatenating the BOW histogram in each bin of the
pyramid to obtain a pyramid feature vector for the entire
image. In order to use a linear SVM for classification, Yang
[16] developed an extension of the Spatial Pyramid Scheme
called ScSPM by using a sparse coding scheme for learning
the vocabulary (instead of using Kmeans ) and max pool-
ing the sparse codes across multiple scales in the spatial
pyramid to obtain feature vector representation of the im-
ages. The computational complexity of ScSPm was tackled
in Wang’s [14] work,where instead of sparse codes locality
constrained linear coding was used followed by similar max-
pooling strategy to obtain the feature vectors.

With the advent of the advanced feature extraction tech-
niques, many state of the art algorithms have been proposed
for object recognition problems. Attempts have been made
to improve the standard K-NN classification scheme by in-
corporating distance metric learning in Chopra [2], Gold-
berger [9]. Weinberger [15] took the idea of distance metric
learning further by obtaining a Mahalnobis distance metric
and testing on problems like facial recognition, handwrit-
ing recognition and text categorization. In the field of su-
pervised dictionary learning methods, Fisher discriminant
criteria FDDL [17] has been incorporated on the sparse co-
efficients in order to learn class specific discriminative dictio-
naries which are applied on the problems of facial recognition
and object categorization. Recent efforts have been made in
the direction of large scale visual recognition challenge, made
popular by the large scale Image database known as Ima-
genet, which contains images for 22K categories of varying
types. Krizhevsky [10] trained a deep convolutional neural
network model for classifying the 1.2 million images in the
ImageNet LSVRC 2010 challenge. Bengio [1] proposed a tree
structure based classifier by minimizing overall tree loss and
applied it to Imagenet dataset. Deng[5] also proposed a label

tree scheme which simultaneously learnt the tree structure
and classifiers per node and obtained balanced trees as com-
pared to Bengio’s scheme. With the increasing popularity of
the supervised dictionary learning schemes in classification
tasks, Zhou[20] proposed a joint dictionary learning scheme
with the aim of classifying visually correlated categories.

3. LARGE MARGIN NEAREST NEIGHBOR
CLASSIFICATION

Large Margin Nearest Neighbor(LMNN) Algorithm pro-
posed by Weinberger [15] aims at improving the k-NN clas-
sification scheme by minimizing the number of differently
labelled examples in the k-nearest neighborhood of the train-
ing samples. It learns a linear transformation T such that
in the transformed space the differently labelled examples
are far apart and the k-nearest neighbors consist of exam-
ples having same labels. For a particular training sample
si(label yi) two types of neighbors are considered i.e. target
neighbors (k nearest neighbors having same labels) and im-
postors (training samples having different labels but lying
within the region marked by target neighbors).
Considering a target neighbor of si to be denoted by sj , then
a training sample sl such that the label yl 6= yi is called an
impostor if the given inequality holds:

‖T(si − sl)‖22 ≤ ‖T(si − sj)‖22 + 1 (1)

The cost function consists of two parts, where the first part is
responsible for attracting the target neighbors closer whereas
the second component aims at driving the impostors away
from the boundary set by target neighbors.
The respective components are given by Costpull(T) and
Costpush(T) which are defined as follows:

Costpull(T) =
∑
i,j i

‖T(si − sj)‖22 (2)

Costpush(T) =
∑
i,j i

∑
l

(1− zil)max(0, distset) (3)

Here distset = 1+DT(si, sj)−DT(si, sl). FurtherDT(si, sj) =
‖T(si−sj)‖22 and j  i indicates that sj is the target neigh-
bor of si. Also zil = 0 if yl 6= yi and zil = 1 if otherwise.
Thus Costpush(T) incorporates the standard hinge loss for-
mulation and takes into account a non-zero loss when the
inequality in (1) is satisfied. The overall cost function is
given by the convex combination of the two components
Costpull(T) and Costpush(T) as follows:

Costtotal(T) = α(Costpull(T)) + (1−α)(Costpush(T)) (4)

Here α is the weight associated with the pull component
Costpull(T) and (1 − α) is the weight associated with the
push component Costpush(T).

Since ‖T(si−sj)‖22 = (si−sj)tTtT(si−sj) and TtT = M
we have (si − sj)tTtT(si − sj) = (si − sj)tM(si − sj) =
DM(si, sj). By including the variable change TtT = M the
loss function in 4 can be rewritten as :

Costtotal(M) = α
∑
i,j i

DM(si, sj)

+ (1− α)
∑
i,j i

∑
l

(1− zil)max(0, dbest)
(5)



where dbest = 1+DM(si, sj)−DM(si, sl). The cost function
in 5 is a convex function of the elements in the matrix M
and can be solved by posing as a Semidefinite Programming
problem(SDP). Actual solver implemented by Weinberger
[15] instead of using a SDP formulation directly solves (5) by
an iterative sub-gradient based method and since the matrix
M is positive semidefinite, projection operation is done onto
the set S+ (cone of positive semidefinite matrices). After
learning of the Mahalnobis distance metric, energy based
classification model inspired by Chopra [2] has been used
instead of K-NN classification due to higher classification
accuracy.

4. SELF-TUNING SPECTRAL CLUSTERING
Standard clustering techniques [12] including spectral based

methods require determination of number of clusters before-
hand. Many applications necessitate the determination of
cluster numbers automatically since the manual specifica-
tion of cluster number might not be an optimal choice. Self
tuning version of spectral clustering proposed by Manor [18]
addresses the issue of automatically selecting the number
of clusters along with handling of the data having multiple
scales.

4.1 Scale determination
Standard spectral clustering techniques determine the affin-

ity between two sample points si and sj using the following
relation:

Af(i, j) = exp(
‖si − sj‖22

2σ2
) (6)

Here a single value of the scale parameter σ is used for com-
puting the pairwise affinities. When the data has multiple
scales i.e. a tight cluster consisting of smaller number of
points exists within a sparse background cluster, a single
value of σ is not an optimal choice . A scaling parameter σi
is determined for each data member si by considering the
distance from the pth neighbor of si.

σi = ‖si − sp‖2 (7)

The parameter p can be considered as the neighbor number
associated with any datapoint. After determination of the
local scaling parameter σi for datapoint si the distance from

si to sj as seen by si is given by
‖si−sj‖2

σi
. Conversely the

distance from sj to si is
‖sj−si‖2

σj
. Using both the distances

the entries of the affinity matrix Af(i, j) are computed as
follows:

Af(i, j) = exp(−‖si − sj‖
2
2

σiσj
) i 6= j

= 0 i = j

(8)

4.2 Cluster number determination
Automatic determination of the number of clusters de-

pend upon the structure of the eigen vectors associated with

the normalized affinity matrix L = D−
1
2AfD

1
2 where the

affinity matrix Af is calculated using (8) and the entries of
degree matrix D are computed using the following:

D(i, i) =

nd∑
j=1

Af(i, j) (9)

In the ideal case when the clusters are widely separated
from each other the matrix L has a block diagonal struc-
ture with the number of blocks equal to number of clusters.
Due to block structure of the matrix L overall eigenvalues
are obtained by the union of the eigenvalues of the individual
blocks and the eigenvectors are obtained after stacking the
eigenvectors of the individual blocks with zeros in specific
locations. By stacking the first cnum eigen vectors of matrix
L(L having a block diagonal structure) in Ec, the matrix Ec
is given as follows:

Ec =


e1 0 . . . 0
0 e2 . . . 0
...

...
. . .

...
0 0 . . . ecnum

 (10)

Here ek is the eigenvector associated with the sub-matrix Lk
, which coressponds to cluster k. Given the matrix Ec and
a rotation matrix R̃, the matrix E = EcR̃ is such that its
rows remain orthogonal to each other and the columns of E
has the same span as Ec. Thus it is possible to obtain Ec
from E using the relation Ec = ER, where R = R̃t

For each cluster number cnum upto maximum number of
clusters Cmax, the rotation matrix R is obtained which re-
sults in best alignment of the columns of E with the stan-
dard basis system. Considering the matrix after rotation to
be denoted by Mr = ER and mi = m

j
ax (Mr)ij , the quality

of alignment of the set of eigenvectors in E is given by :

Costrotate =

nd∑
i=1

cnum∑
j=1

(Mr)
2
i,j

m2
i

(11)

Here nd is the number of datapoints considered for cluster-
ing. The rotation matrix R is recovered such that there is
a single non-zero entry in each row of the matrix Mr. The
optimum cluster number is selected to be that value of cnum
which provides the minimum value of cost function in (11).

5. PROPOSED ALGORITHM
In this section the proposed algorithm HSpecLMNN has

been detailed with specific emphasis on the hierarchical or-
ganization of the image categories, node specific Mahalnobis
metric learning and energy based classification model.

5.1 Hierarchical organization of visually cor-
related categories

The first step in our proposed method is to obtain a hier-
archical organization of the given image categories in a tree
like structure. One possible alternative is to apply top down
hierarchical clustering where one starts with the entire data
in the root node and uses a flat clustering technique like
k-means at each level to split the clusters in one level into
finer clusters. But such a technique involves prespecifying
the number of clusters into which a particular group of data
points must be split. Our goal is to automatically learn the
number of clusters from the given data points and apply
the same technique in a recursive manner to determine the
underlying tree structure .

Since the self tuning clustering algorithm can determine
the number of clusters from a given set of datapoints, it is
used to obtain the hierarchical structure of the set of given
N image categories C = {C1, C2, . . . CN}. Since the goal



is to determine which image categories can be grouped to-
gether, instead of applying the clustering operation on the
entire set of images of different classes, it is done on the set
of characteristic members of the image categories. For the
cth image category Cc with Nc members (feature vectors)
[feat1, feat2, feat3, . . . featNc ] the characteristic member of
the cth image category is given by :

charc =

∑Nc
i=1 feati

Nc
(12)

After l2 normalization of the characteristic members, the self
tuning spectral clustering technique is applied on N such
characteristic members. The basic steps involved in deter-
mination of the hierarchical structure are listed below:

• Start from the root node which contains the charac-
teristic members of all the N image categories com-
puted using (12). Apply self tuning spectral cluster-
ing on the set of characteristic members and obtain
the clusters, where each cluster is a child of the root
node. If a particular non leaf node has greater than
2 image categories, apply the same technique recur-
sively until all the child nodes have atmost 2 image
categories associated with them. Given a non leaf
node n at level l containing the set of image categories
Classn = {Ck, Ck+1, . . . Cr} and the set of classes as-
sociated with the ith child node of n denoted by childi,
then the following property holds:

Classn =

nc⋃
i=1

childi

childi
⋂
childj = φ

(13)

Here nc determines the number of child nodes associ-
ated with the node n. Thus the division of the image
categories among the child nodes is non-overlapping in
nature.

• If the node of the tree has only two associated class
labels (two image categories) then instead of apply-
ing self tuning spectral clustering on the characteristic
members of the two categories , split the current node
into two leaf nodes with each leaf node having an as-
sociated class label.

The above process of determining the hierarchical structure
stops when the number of leaf nodes equal the number of
image categories. The advantage of clustering using char-
acteristic members is that it can be used for learning the
hierarchical structure in databases having large number of
categories like Imagenet which has around 22K image cate-
gories.

5.2 Node specific large margin nearest neigh-
bor algorithm

The organization of the different classes of images in a
hierarchical tree structure is followed by learning of a Ma-
halnobis metric at each non-leaf node. Considering the ith
child node , a broad class label is assigned to it such that
for nc child nodes, there are nc possible broad classes avail-
able for selection at the location of the parent node. Thus
the selection of the appropriate child node is cast as a multi
class classification problem at the parent node. After the
assignment of the broad class labels to the child nodes, a

Figure 2: Node specific learning of the Mahalnobis distance
metric Mpar at level j with the corresponding child nodes
(child1, child2, . . . childnc)at level j+1. nc broad class labels
are available for selection at the parent node’s location.

.

Mahalnobis metric Mpar is learnt at the parent node. The
main idea behind learning a Mahalnobis metric is to ensure
that the number of impostors in the perimeter of the con-
sidered training sample (the perimeter being set up by its
target neighbors) is minimized after learning the metric. In
this case the target neighbors of a training sample indicate
the k nearest neighbors among the members of the child
node, that the training sample is a part of. The impostors
refer to the training samples having different broad class
labels i.e. part of different child nodes, but invading the
perimeter set by the target neighbors. Thus the formulation
for learning Mpar at a non leaf node is given by minimizing
the following function:

Cost(Mpar) = α
∑
i,j i

DMpar(si, sj)

+ (1− α)
∑
i,j i

∑
l

(1− zil)dbestparent
(14)

Here dbestparent = max(0, 1+DMpar(si, sj)−DMpar(si, sl))
Here si refers to a particular training sample, whose class la-
bel is one of the broad class labels given to the child nodes.
sj and sl denote its target neighbor and impostor respec-
tively , and they are defined previously on a per node basis
. Further DMpar(si, sj) = (si − sj)tMpar(si − sj).

5.3 Classification Scheme
For the classification of test sample y, the energy based

model proposed by Chopra [2] and considered by Weinberger
[15] was used on a per node basis instead of standard K-NN
classification scheme. Standard energy based models con-
sider a test sample as an extra training sample and evaluate
the cost function given by eqn. 5 for all possible labels that
are assigned to the test sample. That particular label which
results in the minimum value of the cost function is the pre-
dicted label for the test sample.
In case of the hierarchical model considered, the energy
based classification is performed at each non leaf node in
order to select the child node for traversal in the next level.
Since the child nodes have associated broad class labels, the
test sample while arriving at the non leaf node is assigned
each of the broad class labels and the child node whose la-
bel gives the minimum value of cost function is selected for
next level. For a particular non leaf node at level l of the



tree(associated Mahalnobis metric Mpar) with nc number
of child nodes , the broad class label of a child node ychild is
such that ychild ∈ {1, 2, ...., nc}. For the test sample st with
an assigned class label yt ∈ {1, 2, ...., nc}, the cost function
in (14) when evaluated has three terms

• Cost1 = α
∑
j tDMpar(st, sj). Here j  t refers to

the k nearest neighbors of st having the same label yt
i.e. the k-nearest members of child node having broad
class label yt.

• Cost2 = (1−α)
∑
j t

∑
l(1− ztl)dbest1. Here dbest1 =

max(0, 1 + DMpar(st, sj) −DMpar(st, sl)). This term
takes into account the hinge loss over all the impostors
that invade the boundary set by the target neighbors
of st. Here the impostors refer to the members of the
child nodes having broad class labels different from
yt and lying within the periphery set by the target
neighbors.

• Cost3 = (1−α)
∑
i

∑
j i(1− zit)dbest2. Here dbest2 =

max(0, 1 + DMpar(si, sj) −DMpar(si, st)). This term
includes the contribution of the test sample st, when
it acts as an impostor for other training samples i.e.
members of other child nodes(having broad class labels
different from yt) .

Thus the predicted broad class label for the test sample yt
is given by :

ypred = arg min
yt

(Cost1 + Cost2 + Cost3) (15)

Here ypred ∈ {1, 2, ...., nc}. For determining the node num-
ber to be considered for traversal in the next level, the
tree nodes are marked in level order fashion and an array
nodemark is maintained for each level of the tree . For the
next level l + 1 the numbering of the node selected by (15)
is given by nodemark(ypred). This process of tree traversal
starts from the root node and continues until a leaf node is
reached, whose associated class label is the final predicted
label for the test sample st.

6. EXPERIMENTAL RESULTS
For experiments the Imagenet[4] database consisting of

multiple visually correlated categories is considered. The
Imagenet dataset was considered due to the greater correla-
tion among multiple classes as compared to other datasets.
The categories are organized using Wordnet[8] hierarchy and
each category has a unique wordnet id(wnid). The entire
Imagenet database has a massive collection of data (22K
image categories overall and 1000 categories in the ILSVRC
challenges)and learning of hyperparameters for the entire set
will take months unless one has access to enormous compu-
tational resources. Hence,for the purpose of our experiments
two groups of highly visually correlated 11 classes which are
distinct from each other but correlated among themselves
are considered. The image categories chosen were the same
considered in [20]. The categories and the synset ids are
listed below:

• Group 1:

1. Dog(wnid : n02084071 )

2. Hound(wnid : n02087551 ),

3. Whippet(wnid : n02091134),

4. Cat(wnid : n02121620),

5. Margay(wnid : n02126640)

• Group 2:

1. Computer Monitor(wnid : n03085219),

2. Computer Screen(wnid : n03086502 ),

3. Desktop Computer(wnid : n03180011),

4. Keyboard(wnid : n03614007),

5. Laptop(wnid : n03642806),

6. Television(wnid : n04404412)

Before feature extraction , the images were cropped to ob-
tain the object parts by using the bounding boxes given in
XML format.The XML files were parsed using PASCAL de-
velopment toolkit [6]. After cropping, the multiple objects
in the images are saved resulting in 6313 images of the 11
image categories.

For feature extraction, a dense sampling strategy was used
to obtain the SIFT[11] descriptors of the images. The patch
and step sizes were fixed at 16 and 6 respectively and the
codebook size considered was 1024. The encoding of the
SIFT descriptors was performed using LLC[14] scheme fol-
lowed by max-pooling of the LLC codes across multiple
scales and locations in order to obtain the spatial pyramid
feature vector of the image. Further the dimensions of the
spatial pyramid feature vectors were reduced using PCA.

6.1 Hyperparamter selection
The set of hyperparameters to be selected include: K(number

of target neighbors), outdim(number of rows of linear trans-
formation matrix T),maxiter( number of iterations required
for training) The value of α in (14) was fixed at 0.5. For
hyperparameter selection two strategies were used i.e.grid
search and Bayesian optimization[13].

For grid search techniques, hyperparameters were found
for the entire tree instead of individual non leaf nodes. K
was varied in the range {3, . . . , 15} and outdim was varied
in the range {1000, . . . , 2000} in steps of 100. The maximum
iterations , maxiter was fixed to 200.

For Bayesian optimization the ranges of target neighbors
K and outdim were {1, . . . , 15} and {2, . . . , rval} respec-
tively. rval refers to the number of rows in the training
sample. The maxiter range was varied between 10 and
200. Selection of the hyperparameters using Bayesian opti-
mization was performed for the entire tree instead of each
individual node.

The entire dataset was split randomly(80 − 20%) into a
training and test set. The training set was further split
randomly(80− 20%) into a validation and training set. We
considered 30 such splits of training and validation sets and
the results of the best performing tree structure is reported.
The best performing tree structure is shown in Figure 3.
Using grid search and Bayesian optimization the optimal
hyperparameters obtained are K = 4,outdim = 1600 and
K = 2,outdim = 3463,maxiter = 16 respectively. In or-
der to compare the performances of hyperparameters selec-
tion using grid search and Bayesian optimization, the best
performing tree structure is kept fixed and the for the same
training-test split, the recognition accuracies are listed.



Grid Search Bayesian Optimization
58.31% 69.23%

Table 1: Comparison of the best recognition accura-
cies for the tree structure(tree1) in case of grid search
and Bayesian optimization

Since Grid search’s performance is inferior as compared
with Bayesian optimization, the hyperparameters selected
by the later are considered to be optimal for the entire tree
and used in our subsequent experiments.

Figure 3: Best performing tree structure (tree1) in terms
of classification accuracy. ([1]:Cat, [2]:Monitor, [3]:Screen,
[4]:Desktop, [5]:Dog, [6]:Hound, [7]:Keyboard, [8]:Laptop,
[9]:Margay, [10]:Television, [11]:Whippet)

In the first level of the tree the characteristic members of
all the classes are present as denoted by the groupings of
the 11 classes. In the second level of the tree the classes of
the Group 2(composed of the monitor, screen, desktop, key-
board, laptop and television ) are separated from the classes
of Group 1(composed of the dog, hound, whippet, cat, mar-
gay), thus ensuring that the visually correlated classes are
only grouped together. In the third level finer groupings
are obtained i.e. [2, 3] (composed of computer monitor and
screen classes) and [4, 8](composed of desktop and laptop
classes).

6.2 Effect of neighbor number p

The variation of the tree structure with the neighbor num-
ber p as mentioned in eq. (7) is discussed here. In [18] the
neighbor number p = 7 was found to be suitable for their dif-
ferent datasets. In our case the neighbor number was varied
in two different ways:

• Neighbor number p was fixed at 7. In that case the
tree structure consists of all leaf nodes at the third
level and there are no finer groupings obtained for the
different classes at the third level. The resulting tree
structure(tree2) is shown in Fig 4.

• Neighbor number p was varied depending on the num-
ber of classes in each non leaf node since each non leaf
node has the number of characteristic members equal
to some number of classes. A rule was considered based
on the number of classes associated with each non-leaf
node in order to obtain finer groupings:

– numclass > 15: p = 7

– numclass > 10 & numclass < 15: p = 5

– numclass > 5 & numclass < 10: p = 3

– numclass < 5: p = 2

Here the numclass refers to the number of classes in each
non-leaf node. The tree structure shown in Fig 3(tree1) is
obtained by varying the neighbor number p according to
numclass, instead of fixing a single value of p. For compar-
ing the two tree structures, the same training and test split
was considered and the overall classification accuracies were
reported after hyperparameters selection using Bayesian op-
timization .

Figure 4: Tree structure (tree2) obtained when the neighbor
number p is kept fixed at 7 for the entire tree.

tree1 tree2
69.23% 66.21%

Table 2: Comparison of the overall best classification
accuracies of the tree structure tree1(Figure 3) and
tree2(Figure 4)

In the tree structure tree2 the third level is composed
of leaf nodes whereas the tree structure tree1 consists of
finer groupings between the monitor and screen classes[2,3]
and desktop and laptop classes [4,8]. As evident from the
results in Table 2, the finer groupings in the third level of
tree1 resulted in the increase of classification accuracy, when
compared with the tree structure tree2.

6.3 Comparison with state of the art
The results of our proposed algorithm HSpecLMNN has

been compared with FDDL[17], JDL[20],ScSPM[16],IMDL
[20] and DKSVD [19]. The results reported for these algo-
rithms are those listed in JDL[20]where the average results
of 10 random training and test splits are considered. In
their setup they have considered 4723 images(1491 images
of Group 1 and 3723 images of Group 2 ) and used sparse
coding scheme for feature descriptors instead of LLC and
used a codebook of 1024 atoms. For comparison purposes
we considered the class specific recognition accuracies.

In our setup we have considered all 6313 images obtained
as a result of cropping operation. Further we also fix the
best performing tree structure and test its effectiveness by
reporting the average accuracies of 10 random training-test
splits(80-20%). The motivation behind using LLC instead
of sparse coding in our case was the reduced complexity in
LLC process without causing any significant decrease in the
performance of the algorithm. The tables 3 and 4 list the



Algorithm Cat Dog Hound Margay Whippet
HSpecLMNN 43.74± 6.76 58.26± 6.08 54.32± 7.62 79.65± 7.07 45.56± 3.82

FDDL 66.26± 7.08 44.67± 10.09 57.52± 6.91 68.06± 6.67 62.57± 7.34
ScSPM 71.35± 6.71 45.43± 3.55 58.85± 4.63 80.71± 9.56 41.63± 6.55

jDL 71.67± 3.22 57.14± 4.69 59.62± 4.21 89.29± 2.70 53.06± 3.09
DKSVD 59.46± 5.23 38.57± 6.34 57.69± 9.84 87.50± 8.51 38.78± 5.77
IMDL 71.62± 3.94 54.57± 6.73 61.54± 7.69 86.79± 3.70 42.04± 4.69

Table 3: Recognition accuracies(%) of the Cat, Dog Hound, Margay and Whippet categories

Algorithm Monitor Screen Desktop Keyboard Laptop Television
HSpecLMNN 52.05± 4.91 63.26± 6.32 78.94± 4.32 93.10± 5.01 57.83± 3.10 70.71± 4.01

FDDL 43.75± 7.98 43.75± 8.39 48.99± 7.52 98.04± 0.31 41.19± 8.60 61.60± 5.61
ScSPM 24.58± 4.00 39.22± 3.92 80.77± 6.01 96.65± 1.25 54.88± 6.73 77.38± 3.88

jDL 41.67± 6.97 53.85± 5.38 83.08± 5.02 92.31± 2.28 57.14± 2.87 81.48± 0.67
DKSVD 22.92± 11.28 33.33± 5.11 82.69± 4.13 98.05± 1.01 46.34± 4.98 73.83± 3.68
IMDL 29.58± 4.56 43.14± 6.73 82.69± 1.52 96.11± 0.63 56.13± 6.98 80.37± 3.19

Table 4: Recognition accuracies(%) of the Monitor, Screen, Desktop, Keyboard, Laptop and Television cate-
gories

category specific recognition accuracies of the 11 image cate-
gories. It can be seen from the results in Tables 3 and 4 that
HSpecLMNN achieved the highest recognition accuracies in
4 classes out of 11 classes considered. The performance im-
provements in cases of dog, monitor and screen classes were
significant. Further HSpecLMNN was also able to improve
the classification accuracy of the laptop class and showed
comparable performance in case of desktop .

6.4 Training times and convergence plots
The training times for each non leaf node of the tree struc-

ture are listed . The training times are mentioned in seconds
and reported only after the best hyperparameters are found
for the entire tree using Bayesian Optimization. Since the
nodes are marked in level-order manner, the root node of the
tree (displayed in Fig (3) )is marked 1 in level 1. Similarly,
the node containing the classes [2,3] is marked node 6 of
level 3. Thus the notation a/b denotes the node numbered
a in level b. Since we fix the best performing tree struc-
ture and consider 10 random training-test splits(80-20%),
the training times are listed as average of 10 such runs for
each non-leaf node. Using the notation a/b as mentioned
above, the training times are given as:

Node number/level number Training time (in seconds)
1/1 286.73
1/2 234.72
2/2 436.66
6/3 77.75
8/3 99.94

Table 5: Average training times associated with each
non-leaf node in seconds after the hyperparameters
are fixed using bayesian optimization

The convergence plots for the non leaf nodes of the tree
structure(tree1) are given in the Figure 5.

7. CONCLUSIONS
In this paper we consider the problem of classifying vi-

sually correlated categories using a two step process where
the first step involves organization of the image categories
on the basis of visual similarities in a hierarchical tree like
structure followed by utilization of the tree structure for clas-
sification. For organization purpose the self tuning variant
of the spectral clustering is applied on the set of character-
istic members of the image categories in a recursive manner
in order to determine the tree structure. The tree structure
is further utilized by learning a Mahalnobis distance metric
at each non-leaf node via the LMNN framework . The clas-
sification of the test samples are done in a top-down fashion
starting from the root node to the leaf nodes by using an
energy based model.

Future work involves testing the proposed model for larger
number of visually correlated image categories since the pro-
cedure for determining the tree structure can be scaled to
increasing number of categories. Further this scheme of hier-
archy determination can be extended to cross domain recog-
nition tasks.
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