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ABSTRACT
Robust resource demand prediction is crucial for efficient allocation

of resources to service requests in a distributed service delivery sys-

tem. There are two problems in resource demand prediction: firstly

to estimate the volume of service requests that come in at different

time points and at different geo-locations, secondly to estimate the

resource demand given the estimated volume of service requests.

While a lot of literature exists to address the first problem, in this

work, we have proposed a data-driven statistical method for robust

resource demand prediction to address the second problem. The

method automates the identification of various system operational

characteristics and contributing factors that influence the system

behavior to generate an adaptive low variance resource demand

prediction model. Factors can be either continuous or categorical

in nature. The method assumes that each service request resolu-

tion involves multiple tasks. Each task is composed of multiple

activities. Each task belongs to a task type, based on the type of

the resource it requires to resolve that task. Our method supports

configurable tasks per service request, and configurable activities

per task. The demand prediction model produces an aggregated

resource demand required to resolve all the activities under a task

by activity sequence modeling; and aggregated resource demand by

resource type, required to resolve all the activities under a service

request by task sequence modeling.

CCS CONCEPTS
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1 INTRODUCTION
In a distributed service delivery system, a response to a service re-

quest often involves multiple tasks. These tasks are often dependent

on each other in sequential order. Dependence order among the

tasks is restricted by the service delivery industry domain. Differ-

ent service requests can be of different types. The type of a service

request is defined by a combination of tasks. Further, a task is de-

fined by a combination of activities. Each task is carried out by

one or more resources of a specific resource type. All the activities

associated with a task are carried out by the same resource type.

A proactive response in such a service delivery system requires

estimation of upcoming resource demand at activity resolution

across all service requests. Demand estimation is done over a speci-

fied time interval. The specific composition of task types defining

a service request type is explicitly modeled in our method. And the

specific composition of activities defining a task type is also explic-

itly modeled in our method. Activity is the finest level of granularity

of specifying the resource demand. For example, in an electrical

utility, the service request is equivalent to a reported power out-

age. Resources represent the skilled human resources involved in

resolving the service requests. Based on the work type, there can

be multiple resource types, viz. repair crew, and assessment crew. A

service request may involve multiple tasks based on the type of the

service request. Each task involves multiple activities, viz., acquire

tools, travel to the location, and work at the site.

There are two distinct aspects to this problem, firstly estimating

the number of incoming service requests, and secondly, for a given

volume of requests estimating the resource demand. The first aspect

of the problem can be solved using time-series analysis. But it’s

not possible to solve the second part using time-series analysis, as

the time series models are incapable of producing a sequence of
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activities with dependency constraints, which is essential for the

resource demand estimation. This estimation process involves a

high degree of uncertainty, inherent to the system.

Here we will discuss a novel Hierarchical Bayesian Network

model for robust estimation of the resource demand profile for a

given set of service requests.

2 RELATEDWORK
Resource demand estimate for service request resolution under

emergency is needed for any service delivery organization for faster

resolution of the service requests. The problem of risk management

of electrical outages was addressed by [10] with the use of a Poisson

regression model for spatial data in a hierarchical Bayesian frame-

work. During a severe weather event, a Tobit model-based system

was proposed by [2] for estimating number of outages in a distribu-

tion grid. The problem of forecasting weather-driven damages of

different types is tackled in [15] by combining a spatial clustering

based scheme with data from multiple weather networks. A combi-

nation of weather-based simulations, land-cover and outage utility

data was used by [7] to calibrate various ensemble-based methods

for predicting the spatial distribution of outages in Northeastern

USA. Another application of ensemble-based methods was explored

by [12], where a boosting-based technique called Adaboost+ was

designed for estimating wind and lightning related outages.

In [1], a statistical model based on weather forecasts, asset in-

formation, historical damage patterns and geography was built for

predicting localized interruptions and was subsequently used by

National Grid in its emergency planning efforts. [16] also combined

calibrated weather models with historical damage data to design

a forecast model for outages. An integrated system called OPRO

(Outage Prediction and Response Optimization) [20] was proposed

for emergency situations in terms of weather events by integrating

weather and damage predictions with resource planning and health

aware damage hot-spot analysis. [17] developed a decision support

tool based on the model of distribution circuit layout, the placement

of protective and switching devices and the location of customers

for resource allocation and management. [14] in their work have

proposed a simulation based modeling framework to analyze the

optimal point of distribution under emergency situation.

A predictive method that utilizes different weather data in a

GIS framework was developed for outage maintenance by [3]. The

GIS framework in-spite of providing the advantage of handling

geo-spatial data efficiently, fails during the time of extreme weather

events due to non-availability of location information. [21] explored

a fuzzy logic based methodology for crew management in case of

large scale multiple outages. A similar approach was considered by

[4] where both weather related forecasts and power-system based

operational data were integrated with a fuzzy logic approach to aid

the outage maintenance system. An unsupervised approach based

on ensemble learning method was designed by [19] for predicting

the damage of extreme events like wildfires in Australia.

In spite of this large gamut of literature none precisely addressed

the problem of robust demand estimation along with a structure of

task/activity order dependency. The method can address modeling

of any system that conforms to the desired process ontology (as in

section 3).

3 DEFINITIONS
In order to produce a generalized model across various systems, we

have designed a descriptive process template. Each service request

is broken down into a sequence of tasks. Each task resolution in-

volves a sequence of activities. Demand is attributed to each activity.

Demand is described in terms of resource hours. E.g., If the activity

demand is 8 units, it means that a resource need to spend 8 hours to

complete that activity. Equivalently, it takes 4 hours for 2 resources

working on the same activity together. The system takes the ex-

pected number of service requests (R) over a period of time as input,

and produces spatio-temporal resource demand profile over that

period (D). The service requests are distributed over geolocation,

and arrive at different times. The split of the service requests (R)
into their corresponding tasks is represented as (T ), and the split of

the all the tasks (T ) into their corresponding activities is presented

as (A).
For each activity, there is a distinct resource demand associated.

Demand associated with an activity is affected by few observed

variables or attributes, which we call as factors (F) in our modeling.

The factors can be external (E) and internal (I ). Generally, external
factors (E) remain constant during the period of service request

resolution. Internal factors (I ) represent variables that are associated
with the service request, task, or activity (Figure 1).

In an electric utility distribution grid, terrain specifics of the

outage location, time of the year, time of the day, weather condition

are examples of external factors. Equipment associated with an

outage, severity of an outage, type of task are examples of internal

factors. Internal factors are only known post the service request

resolution.

The model assumes a causality relationship between these en-

tities, viz. factors, service requests, tasks, activities, and demands.

Imposing this causality restriction helps to disambiguate the depen-

dency order between these entities. Figure 1 depicts this dependency.

Assume that IR , IT , and IA are the internal factors associated with

the service requests (R), tasks (T ), and activities (A) respectively.
E, and R are observed entities (i.e., input) at the time of demand

estimation (highlighted with double circled nodes in Figure 1). T ,
and A are generated using sequence models. R, T , and A represent

the volume estimate of work at different granularity and are shown

as nodes in black in Figure 1. Modeling of T is dependent on E and

IR . Modeling of A is dependent on E and IT . The demand estimate

(D) is obtained using hierarchical Bayes model (marked blue in

Figure 1), which intern uses all factors (E, I ). Modeling of internal

factors (IR , IT , and, IA) is always dependent on external factors (E)
(all the factor nodes are marked in red in Figure 1). Details of the

internal factor modeling, and demand estimation are explained in

the section 4.

4 METHODS
Demand prediction for a specified number of service requests (R)
happens via two phases: training, and scoring. In the training phase,

statistical model parameters are estimated using the historical data.

Here historical data includes details about the service requests,

their corresponding tasks, activities, and resource demand along

with the associated external factors. In the scoring phase, using the
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E R T A D

IR IT IA I

Figure 1: Process template, and causal dependencies.

derived statistical model, demand is estimated for each activity that

corresponds to the set of input service requests.

The non-parametric statistical analysis of the resource demand

often exhibits multi-modal behavior. If the modes are distinct and

well separated, we call them operating characteristics. There may

be one or more operating characteristics associated with a input

set of service requests.

The training phase includes 4 major sub-phases: (1) Identifica-

tion of contributing factors to distinct operating characteristics, and

partitioning the training data for regressionmodel building, (2) Con-

ditional sequence generator modeling, (3) Generative models for

internal factor estimation, and (4) Identification of crucial factors

and robust regression model estimation for resource demand.

Scoring step uses the trained model obtained in the training

phase, along with the expected volume of the service requests and

the observed values of external factors to produce the expected

resource demand profile (D). Scoring step performs a series of pre-

diction tasks in the order of entity dependencies in the process

template (Figure 2). Score phase involved three distinct computa-

tional steps: (1) Estimation of internal factors, (2) Expected task

sequence estimation along with activity sequence estimation, and

(3) Demand estimation using regression model.

4.1 Input
Inputs to the training are: (1) historical data, (2) input specifica-

tion. Historical data is a set of N records. Each record composed

of values for different data items, e.g., service request, task, activ-

ity, task type, task dependency, associated process attributes etc.

The input specification explicitly describes the correspondence be-

tween each entry of record to the process template. The historical

data is transformed to map to a set of tuples {t iR , t
i
T , t

i
A,E

i
1
, . . . Eik ,

P i
1
, . . . , P im ,R

i ,T i ,Ai ,Di }i=1...N , where t iR ,t
i
T , and t

i
A represent the

respective starting time-stamps for service request, tasks, and ac-

tivities of each historical data entry. Ei represents various external
factors, P i , Ri , T i , Ai , and Di

, are associated parameters, service

request, tasks, activities and resource demand respectively. In a

electric utility distribution grid, examples of a parameter are ser-

vice request type, service request arrival time, task type, equipment

used, cause of the outage, etc. These parameters are used to derive

the internal factors (I ) in our method.

4.2 Identification of distinct operating
characteristics

In order to produce a low variance demand estimation model, the

demand profile of the training data is analyzed for identification

of multi-modality or distinct operating characteristics. The multi-

modality is associated with operating characteristics only when it

is possible to identify an unique factor, that best explains the multi-

modal behavior (Figure 3). Our model imposes a strong association

for any operating characteristic with only one factor, in order to

identify the appropriate statistical model during demand estimation

step. To evaluate the contribution of a factor to the distinct oper-

ating characteristics, the data is partitioned into non-intersecting

chunks by factor value. If Fi represents a factor which can take pos-

sible values { fi,1, fi,2 . . . fi,k }, then the data X is partitioned into

k non-intersecting sets X1, . . .Xk , where X j = {x : Fi (X ) = fi, j }
and j ∈ {1, 2, ...,k}.

Kolmogorov-Smirnov (KS)’s two sample test identifies the max

separation between two non-parametric cumulative distributions

γm,n = max

x
|Gm (x) −Gn (x)|

where,Gm andGn are two cumulative distributions derived from

input data partitions m and n respectively. KS distance (γm,n ) is

symmetric and satisfies metric properties [6].

KS distance is evaluated between all partition pairs. δD is a deci-

sion parameter used to decide whether the KS distance obtained

is significant for operating characteristic identification. In order

to ascertain the significance of the KS distance we impose a min-

imum sample size (N) requirement on each partition. Using the

distance measure Γ(X |Fi ) =
[
γXi ,X j

]
i, j
, a hierarchical cluster is ob-

tained (H(Fi |Γ)). At a distance cutoff of δD , the cluster partitions are
marked. This partitions the factor Fi values into non-overlapping

groups C1Fi
, . . . ,CuFi

, such that KS distance between any two factor

values in the same partition is < δD , while between any two factor

value across partitions is ≥ δD .
The sup norm of the evaluated distance matrix ( | |Γ(X |Fi )| |∞ )

is marked as factor association score to operating characteristics.

The factor with maximum association score (≥ δD ), is considered
as the explanatory factor.

Explanatory factor identification, splits the training data into

non-intersecting partitions. For each data partition, above method

of finding operating characteristics is repeated, till no distinct oper-

ating characteristics are found.

4.3 Conditional sequence generator
Total resource demand forecast (D) is an aggregated demand across

all activities.

D =
∑
r

∑
t ∈T(r,F )

∑
a∈A(t,F )

D(a, t , r , F )

In above expression, r iterates over list of all incoming service

requests. T(r , F ), and A(t , F ) are task sequence generator and ac-

tivity sequence generators respectively, and both these sequence

generators are influenced by external and internal factors F (i.e.,

E ∪ I ).
We have used Markov chain approach for the activity sequence

and task sequence modeling [13]. However, the framework is not
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Figure 2: Steps in the activity based demand estimationmethod.Oi is used to represent an outage (i.e., a service request). Service
request type (i.e., SR Type) is the factor considered here.

Cluster-1 Cluster-2

Figure 3: Sample partitioning of data points into two clus-
ters. Factor values are similar, in each cluster.

restricted to markov assumption, and any non-markovian sequence

model can also be used for the same. A typical Markov chain is

an infinite length sequence generator. In the current context, task

and activity sequences are of finite length. To address the same, we

introduce two pseudo states, viz., start state (s) and end state (e)
(Figure 4). Any sequence generated by this Markov chain model

is of type (s . . . e). The Markov chains are represented with tran-

sition matrixM, which is learned from the historical data using

Markov training process. Causal dependence between the factors

restricts the factor selection for task sequence generator and ac-

tivity sequence generator modeling. Influential factor selection for

sequence generator is a computationally expensive process. For

every factor (Fi ), first the data is partitioned by the factor value asso-
ciation. Markov transition matrix is estimated on each sub-partition.

M(X |Fi, j ), represents the Markov transition matrix derived for jth

value of the factor Fi , from a given data X . The distance between
given pair of Markov transition matrices (Mi , andMj ) is defined

as ‘Frobenius‘ norm of difference matrix [11].

d(Mi ,Mj ) =

√
trace

(
(Mi −Mj )

T
(Mi −Mj )

)

s

S1

S2

e

ps1→s1

ps2→s2

p s
1
→
s 2

p s
2
→
s 1

Figure 4: Finite state generator using Markov model.

The influence of a factor Fi on the task sequence or activity sequence
(I(X |Fi)) is estimated as the maximum distance from all pairs of

transition matrices derived from the partitions for factor (Fi ).

I(X|Fi) = max

j,k
d
(
M(X |Fi, j ),M(X |Fi,k )

)
Factors are ranked using influence score. Top ℓ factors are used

for final sequence generator modeling. ℓ is a model regularization

parameter. Factors are categorical in nature, separate sequence gen-

erator models are derived for different combination of influencing

factor values.

4.4 Demand estimation model
Deriving the dependency graph is the crucial step in the demand

estimation model. Dependency graph incorporates the causal de-

pendency as described in the process template, and also captures
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statistical association between all entities. Dependency graph is

computed multiple times during the training phase. It is used for

internal factor modeling, and for resource demand modeling. For

internal factor modeling, a single dependency graph is generated

for all factors using the complete training data. In resource demand

modeling, distinct dependency graphs are derived for each activity

demand under each operating characteristic partition.

4.4.1 Dependency Graph. Mutual information (MI) is used to iden-

tify statistical association between any pair of entities. The chal-

lenge here is the factors are categorical, while the demands are

continuous. A nearest-neighbor based method is used for accurate

estimation of MI [18]. A normalized mutual information (NMI)

measure is used for system-wide analysis [8]. NMI between two

random variables X and Y is defined as,

NMI (X ;Y ) =
I (X ;Y )

min(H (X ),H (Y ))

where I (X ;Y ) represents the mutual information between variables

X , and Y ; H (X ), and H (Y ) represent the information entropy for

variables X , and Y respectively. The NMI is evaluated between

every pair of entities E, I andD. In a dependency graph, each vertex

represents either a factor or a demand variable. An edge between

node pairs describes the statistical association in terms of NMI

as edge-weight. A direction is assigned to each edge by causal

dependency compliant with process template.

4.4.2 Internal factor modeling. Dependency graph with all fac-

tors is the backbone for internal factor modeling. Full training

data is used to derive this dependency graph. ℓ is a model regu-

larization parameter; i.e., the maximum number of factors that

can be used in modeling of an internal factor is ℓ. Only top ℓ

in-coming edges are used in factor modeling. For each internal

factor modeling, a joint distribution is generated from the data X .
Let’s assume an internal factor Fi can take k distinct values, viz.

fi,1, fi,2, . . . , fi,k . Fi1, Fi2, . . . Fiℓ , are the modeling factors for Fi
derived from dependency graph. The generative statistical model

for internal factor Fi captures the conditional probability distribu-

tion P(Fi |Fi1, Fi2, . . . Fiℓ).

4.4.3 Hierarchical Bayesian Estimation. A Hierarchical Bayesian

model (HBM) is used for resource demand modeling. A distinct

HBM model is derived for each activity, and its operating charac-

teristics. First using the variable dependency graph for a demand

associated with an activity (Da ), statistical association of factors

to Da are identified. Top ℓ influencing factors are used in the mod-

eling. Factors are further ranked by their NMI value with Da in

descending order. The training data is then recursively partitioned

using the factor values in the rank order in a hierarchical fashion.

The root node represents the set of all entries of Da . In the next

level, each partition represents a set of values of Da associated with

a unique factor value. Similarly, the subsequent data partitions are

obtained with respective factor values in a ranked order. In the

hierarchical data partition, the data size reduces exponentially with

increasing depth of the partition tree.

In HBM, parameter estimation is carried out in top-down fashion.

First the statistical distribution is obtained for the root partition.

For root node, maximum likelihood estimate (MLE) is used for

Figure 5: Schematic of various concepts in our method, and
their execution order dependency. Solid boxes are the inputs
to the training phase. The dashed boxes are the final pro-
duced models.

the parameter estimation. In subsequent partition, parameter es-

timation is carried out using Bayesian model, with prior on the

statistical parameters derived using the root partition statistics,

P(θ |X ) ∝ P(X |θ )P(θ ) [9]. This process ensures derivation of robust

statistics less sensitive to outliers even with sparse data (Algo-

rithm 1).

Algorithm 1 Hierarchical Bayes Model

1: procedure Recursive Parameter Estimation

2: Data set {xi }i=1...N
3: Parameter from parent distribution θp
4: Sample bootstrap count Nb
5: Θ← ∅
6: for i ∈ {1 . . .Nb } do
7: xs ← sample(N |θp )
8: θs ← MLE(xs )
9: Θ← {Θ,θs }

10: α ← MLE(Θ)
11: θe ← MAP(θ |xi ,α) ▷ θ is the search parameter

12: return θe

4.5 Model Execution
Demand estimation, and task/activity sequence modeling are car-

ried out in parallel. Both these analysis derive their own factor

dependency graphs. Finally, factor dependency graphs, and influ-

ential factors for sequence models are merged together to yield the

final factor dependency graph (Figure 5). Factor dependency graph

is the guideline for the order of execution of different models in the

scoring phase. At the end of the training process, the final derived

model includes following components (1) factor dependency graph,

(2) generative model for internal factors, (3) sequence generator

models for task and activity, (4) hierarchical Bayesian models for

resource demand estimation.

In the scoring phase, for a new input with expected volume of

service requests and their associated external factors, the model

estimates internal factors in the order of their dependency, as de-

scribed by the factor dependency graph. Internal factor modeling

often involves sequence modeling of tasks and activities. Once all
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the dependent factors are estimated, resource demand estimation

is carried out using the hierarchical Bayesian model.

4.6 Sequence Generator
Let’s assume,M represents the Markov transition matrix for se-

quence generation, and η represents a feasible state inM. Probabil-

ity of l-th state being η, can be written in a dynamic programming

formulation as,

p(η, l) =
∑
x

p(x , l − 1)M(x ,η)

Boundary condition to this formulation is at l = 0, p(s, 0) = 1.M is

a stochastic matrix; i.e., for any l ,
∑
x p(x , l) = 1. But the end state

(e), is an absorbing state, i.e., p(e, e) = 1. The probability of p(e, l)
monotonically increases with increasing l . With the length of finite

sequence generated using the Markov sequence model exhibits an

exponential decay. Assume a simple single state system. The state

space of the Markov transition matrix, contains three states {s,η, e}.
Assume p represents the transition probability from state η → η.
Then the probability vector of l-th state over three respective states

can be analytically derived as (0,pl−1, 1. − pl−1) ∀ l > 1.

5 EXPERIMENTAL RESULTS
To validate the model accuracy, we have created a simulated data-

set for storm event scenarios using the simulator described in sec-

tion 5.1. The simulation produces 30 distinct storm event scenarios

over 8 locations and simulates a log containing > 10
6
outage entries.

The simulation also generates demand data at the task and resource

level granularity for each outage. 20 of these events were used for

training the model, while the rest 10 were hold-out for testing pur-

poses. The model prediction accuracy was tested on the hold-out.

Demand response for each event is disjointed. Our model predicts

the demand at task and resource type for each event independently.

We consider that any location is impacted by at maximum one

storm event at any given time. On a given day, there can be simul-

taneous storm events occurring at different locations. Each storm

event on average spans over 4 locations and lasts for 7 days. The so-

lution has been validated over a real date obtained from a smart grid

electricity distribution client. However, the provided data sample

is not large enough to perform exhaustive experimental analysis,

hence we resort to simulated dataset.

5.1 Service Outage Simulator
Wehave created a custom simulator for outagemodeling. Themodel

simulates service outages due to storm events in the electricity dis-

tribution grid network. The model first simulates a location topol-

ogy using a planar graph, where each node of the graph represents

a location, and adjacent nodes represent geospatial neighborhood

locations. A random walk on the graph produces a storm trajec-

tory along with storm severity/intensity change. Given a storm

severity, we simulate daily asset (electrical equipment) outages at

each location. Each outage corresponds to one service request. The

location-dependent service requests are then ordered by the storm

trajectory produced by the random walk. The parameters to the

simulator are the number of locations, storm severity, max number

of service requests (corresponds to the maximum number of assets

at a given location) per day, type of service requests, and maximum

storm duration at any location.

5.2 Model Prediction Accuracy
Experiment with the simulated data empirically demonstrates that

(Figure 6), the model can capture the actual resource demand pre-

cisely at resource type and task level. The model produces predic-

tion at a task and resource type level granularity. Each point in the

plot (Figure 6) represents demand prediction (on Y-axis) vs actual

demand (on X-axis) at a given location and a day, aggregated over

all resource types. The model shows very good accuracy in predict-

ing the total number of task volumes (Figure 6a), with a Pearson

correlation coefficient, ρ ≥ 0.99. This empirically supports that the

limiting highest probability sequence is an unbiased estimator for

the total task volume. The total demand estimates generated by the

model correlates very well with the test data (Figure 6b), with a

Pearson correlation coefficient, ρ ≥ 0.98. This indicates hierarchical

parameter estimation was able to learn unbiased estimates of model

statistics. The model produces simulated demand estimates at task

and resource type granularity. The simulated data does guarantee

one to one correspondence to observed data at the individual task

level. To compare the demand estimates at the individual task level,

we used average demand per service request statistics to estab-

lish the baseline. The result shows stable homoskedastic statistics

(Figure 6c), with a Pearson correlation coefficient, ρ ≥ 0.82.

The model produces an unbiased statistics for resource demand.

We empirically validated the same on the simulated data set. The

simulation was carried out with 3 distinct resource types. Resource

demand statistics across these resource types are distinct. The re-

sult shows that the task volume prediction and resource demand

prediction is well balanced across three resource types (Figure 7).

5.3 Operating characteristic identification
We evaluate the effectiveness of distinct operating characteristics

detection algorithm, by conducting experiments on synthetic data.

The algorithm must identify only those operating modes which

exhibit significant differences in their distribution, also uniquely

identified by distinct factors. To test the same, we have designed a

parametric strategy for synthesizing experimental data. We assume

that the data follows normal distribution. There exists k clusters

in the experimental data, and for each cluster there exist distinct

statistics (µ j ,σj ), where j = 1, . . . ,k . µ j and σj are the mean and

standard deviation of jth cluster respectively. Let Fi is a categorical
decision factor, taking p different values. Association of value of

Fi with a cluster is described using Multinomial distribution. We

assume k = 2, and p = 2.

The parameters for experimental design are α , and ZD . Here, α
models the confusion between the clusters; i.e., how distinctly the

factor is characterizing the operating modes, and ZD controls the

cluster separation. The confusion matrix modelled using α can be

described as below:

cluster - 1 cluster - 2
factor-value: a α (1 − α )
factor-value: b (1 − α ) α
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(a) (b) (c)

Figure 6: Model predictions aggregated over all resource types, for: (a) number of tasks, (b) resource demand, and (c) resource
demand per service request.

Resource Type - 1 Resource Type - 2 Resource Type - 3

Figure 7: Model predictions presented per resource type(each column), for: number of tasks (first row), and resource demand
(second row). The correlation between the prediction and actual is shown in the inset.

α takes values in the range of [0, 1]. α = 1 signifies one to one

correspondence between a cluster and a factor, and α = 0.5 suggests

no correlation between clusters and factors.

The cluster separation is described as ZD =
|µ1 − µ2 |

σ1 + σ2
. That is

higher value of ZD higher the separation between clusters.

We have carried out experiments with distinct values of δD
ranging from (0.3 to 0.9) to demonstrate its effect on the operat-

ing characteristics detection algorithm (section 4.2). Experimental

results (Figure-8) confirms lower values of δD results in detection

of operating characteristics with high degree of cluster confusion.

Higher values of δD identifies well separated operation characteris-

tics, and low confusion on factor values. For robust modeling, high

value of δD (in the range of ≥ 0.85) is best suggested.

5.4 Sequence Generator
In this section, we study the effect of training data size on the reli-

able estimation of Markov transition matrix parameters using sim-

ulation. We generate a finite set of sequences using a finite Markov

transition matrix with fixed parameter values. The generated se-

quences are then used to estimate the Markov model parameters

using maximum likelihood. Frobenius norm of the actual and esti-

mated Markov transition matrices difference is used as a measure

of convergence of the sequence model.

Experiment shows (Figure 9) the error in the parameter estimates

goes down exponentially with the size of training data. This expo-

nential decay in error estimation guarantees reliable estimate of the

dynamical system parameters even with a moderate size training

data set.

5.5 Model Comparison
The proposed model automatically discovers the influencing param-

eters from process historical logs with process template restriction.

The sequential modeling mechanism emulates the process depen-

dencies, thereby producing a stable model. To demonstrate the

same, we have compared our model with state of the art regression

model (Xtreme Gradient Boost) [5]. All the system parameters are

made available to the XGBoost model for the demand estimation.

The model is trained and tested against the same data set described

earlier. XGBoost model parameters are tuned to produce a model

with best prediction accuracy on the training set. We have used the
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(a)

(b)

Figure 8: Experimental validation of operating characteris-
tic identification algorithm.

Figure 9: Markovmodel parameter estimation errors decays
exponentially with the number of samples.

mean absolute percentage error (MAPE) as a comparison metric.

We have compiled the prediction accuracy metric at all 8 loca-

tions. The experiment shows even in few instances (viz. location-0,

and location-6 in Figure 10a), XGBoost model produces better task

volume estimate compared to our proposed model, but failed to

do so in the total resource demand estimation for those instances

(Figure 10b). Our approach produces a robust (insensitive to out-

liers) estimate of the system parameters via hierarchical modelling.

Further, due to the fact that our proposed approach estimates the

demand distribution, rather than minimizing the prediction error

explicitly like XGBoost model, the demand estimate produced by

our approach is more accurate along with an uncertainty measure.

Our model produces an average MAPE of 45% and 43% for task

and resource demand estimate respectively, compared to the values

57% and 102% produced by the XGBoost model (Figure 10). The

(a)

(b)

Figure 10: Mean absolute percentage error (MAPE) : (a) for
task volume prediction, (b) for resource demand prediction.

bootstrap analysis also showed a much stable prediction behavior

of our proposed model compared to the XGBoost model.

6 CONCLUSIONS AND SUMMARY
Here we propose a generic method for demand estimation in a

distributed service delivery system. The process template proposed

on which different components are integrated are fairly generic,

and can be extended to various domains of distributed service deliv-

ery. Novel contributions of our methods are, producing sequence of

dependent tasks, producing sequence of dependent activities, gener-

ating associated resource demands, and finally producing a measure

of uncertainty. This is extremely useful for robust resource planning

to allocate resources, for the faster and cost efficient resolution of

the service requests.

The proposed method uses Markovian assumption for task se-

quence and activity sequence generation. This makes the process

less computation heavy and amenable to mathematical analysis.

There are use-cases, where the activity and task sequence exhibits

memory, or higher order correlation. The methods can be extended

easily to accommodate such sequences generation models. Even

with Markov assumption, we have attained a very robust prediction

accuracy on a real life representative data-set.

Output from this method can be consumed by an optimization

planner for effective planning of resource allocation to service

request resolution. The demand prediction using this method, can

be carried out at real time, even for inputs with partially observed

data. This feature particularly is very useful for making mid-event

management decisions under emergency conditions (e.g., in the

event of a storm, or earth quake, or fire, etc.).
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