
Future Sales Prediction

Digbalay Bose
Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, CA 90089

dbose@usc.edu

Souvik Kundu
Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, CA 90089
souvikku@usc.edu

Abstract

This paper proposes an ensembling of decision tree model based future sales pre-
diction. In particular, we present a detailed description of feature engineering
necessary to generate trainable parameters and then perform detailed model per-
formance study with various state of the art decision tree based models. Our best
performing model resulted in a RMSE of 0.87605 achieving a class rank of 6
and Global Kaggle leaderboard rank of 62.

1 Introduction

In this paper we present detailed description and evaluation of the Kaggle future sales prediction
challenge. The remaining of the paper is oriented as follows: In Section 2 and 3, we present details
of data pre-processing. Section 4 elaborates about feature engineering to generate the trainable
parameters. Section 5 describes the model description of the tree based models which were used. We
present detailed results in Section 6 before concluding in Section 7.

2 Data description

Training data given in train.csv has 2935849 rows and has 6 columns: date, date_block_num, shop_id,
item_id, item_price, item_cnt_day. The date range is from 1st January, 2013 to October 2015.
The month number is listed from 0 to 33 in date_block_num. Each row is associated with a per
day sale of a specific item along with its shop id. The per day sale of each item in a shop wise
mannner (per shop id wise) is listed under item_cnt_day. Shop information is provided for 60 shops
in the form of shop name and shop id in shops.csv. Details about items are provided in items.csv
regarding item_id, item_name and item_category_id. There are total 22170 items. Further details
about the item categories are provided in item_categories.csv in the form of item_category_name and
item_category_id. The goal is to predict the monthly sales for each item-shop id pair in test set.

3 Data-Preprocessing

The data preprocessing part consists of modifying the outlier elements and merging duplicate
information. For cleaning the outlier elements, we consider the fields item_cnt_day and item_price.
We plot the distribution of item_cnt_day and find the number of entries having values less than zero.
The distribution of entries less than zero are shown in Figure 1(b)-(c). From Fig 1(b)-(c), we can see
that there are 7356 entries with item_cnt_day values less than zero. The negative values span from
-22 to -1. We fix these 7356 entries from training data by setting the item_cnt_day values to 0. Since
item_price cannot be negative, we keep only those entries whose item_price values are positive.
From the given shop data information in shops.csv, we have details of 60 shops with their shop names
and ids. From the shop name information, we can see that there are multiple cases where shops with

2021- Proposal.

(a) (b) (c)

Figure 1: (a) Example of same shop names for different shop ids, (b) Distribution and (c) per element
count of negative values of feature item_cnt_day

same names have different shop ids. We merge those entries in training data. We can see from Fig
1(a) that shop id pairs (0, 57) and (1, 58) have the same shop names. Similar trend is observed for
shop id pairs (10, 11) and (40, 39). Training entries for same shop names are merged together.

4 Feature Engineering

4.1 Data Exploration

In order to find the distribution of data across different shops and item categories, we plot the monthly
item count with different item category ids (84 in total) and shop ids (60 in total). The monthly count
distributions are shown in Fig 2(a) and Fig 2(b), respectively.

(a) (b)

Figure 2: (a) Distribution of monthly count with item category id. 84 item categories are listed in x
axis. (b) Distribution of monthly item count with shop id. 60 shop ids are listed in x axis.

4.2 Item category and name based features

In order to extract information from the item category data given in item_categories.csv, we split the
item_category_name into fields subtype and type. While splitting using the delimiter " ", we consider
the first word obtained from split as the type. We further filter out the field type by considering only
those type entries whose number of occurrences are greater than 4. The type entries whose number
of occurrences are less than 4 are grouped together in one field called ’etc’. In order to extract the
subtype, the item_category_name is split using the delimiter "-" and the second split is considered as
the subtype.
We also extract features related to item name from the item_name field in items.csv. We split the
item_name using two delimiters "[" and "(" into fields name2 and name3 respectively. We further
extract the item type information from name2 section. We then find the count of each item type from
22170 item ids available in items.csv. Using the item type information, we group those entries in
name2 together whose counts are less than 40.

4.3 Shop based features

To extract shop based features, we use the information given in shops.csv. Each entry in shop_name
column is split into shop_category and shop_name. We split the shop_name based on " " delimiter
and use the first split string as city and the subsequent one as the shop category. We broadly group the
shop categories into 5 segments based on number of occurrences. The distribution of shop categories
are listed in Fig 3a. In Fig 3b, the category names are listed in Russian.

2

(a) (b)

Figure 3: (a) Distribution of type codes of various 84 item categories. The type codes are translated
from Russian to English. (b) Distribution of shop categories among the 60 shops listed in shops.csv.
Shop category names are listed in Russian.

4.4 Mean encoded features and lag feature generation

For generating the training data, we first consider each valid shop id-item id pair for each month.
This is done to make the training data similar to the testing data where predictions have to be done for
each shop-item id pair. In the above shop id-item id based training data, we add average statistics for
various combinations. For each month, we first extract the average item count as date_avg_item_cnt.
We extract the average monthly item count features based on item id (date_item_avg_item_cnt),
shop id (date_shop_avg_item_cnt), shop id and item id pair(date_shop_item_avg_item_cnt), shop id
and subtype code (date_shop_subtype_avg_item_cnt), shop city(date_city_avg_item_cnt) and shop
city and item id pair(date_item_city_avg_item_cnt). In standard time-series forecasting problem,
features from prior time-steps help in capturing the temporal dynamics in future. After extracting
the mean encoded features, we pass those features through a lag generation pipeline for adding prior
information for the current month. The features from previous time steps are included as lag_i(feature
from ith previous month, i=1,2,3).

4.5 Other features

We also use revenue based feature where revenue is computed as the product of item_cnt_day and
item_price. For each month, we compute the total shop_id wise revenue as date_shop_revenue. From
the date_shop_revenue estimates, we compute shop-id wise average revenue as shop_avg_revenue.
The delta_revenue feature is computed as the deviation of the date_shop_revenue from
shop_avg_revenue for that month. We pass delta_revenue through the lag generation pipeline
to generate delta_revenue_lag feature. Auxiliary information is also added in terms of first month of
sale for each shop and item id pair(item_shop_first_sale) and item id (item_first_sale). The item_price
trend information is added in terms of delta_price_lag, where we measure earlier month’s deviation
calculated as the difference between mean price of each item id and their aggregated mean price. We
also add the number of days for each month as a feature and the actual month number(date_block_num
mod 12)

4.6 Final feature set

We encode all the categorical data like name_2,name_3,type_code etcinto integer features using the
Label Encoder utility in scikit-learn. For the final set of experiments, we use a set of 32 features
for training our model, shown in Table 1. We consider the data from the 3rd month to 32nd month
as our training set (9106486 samples). The data from 33rd month(238172 samples) is taken as the
validation set.

Feature type Feature set

Preprocessing based feature
date_block_num, Shop_id, Item_id,
Shop_category,Shop_city, Item_category_id,
name2, name3, subtype_code, type_code

Lag based feature

item_cnt_month_lag_1,item_cnt_month_lag_2,
item_cnt_month_lag_3, date_avg_item_cnt_lag_1,
date_item_avg_item_cnt_lag_1,date_item_avg_item_cnt_lag_2,
date_item_avg_item_cnt_lag_3, date_shop_avg_item_cnt_lag_1
date_shop_avg_item_cnt_lag_2, date_shop_avg_item_cnt_lag_3,
date_shop_item_avg_item_cnt_lag_1, date_shop_item_avg_item_cnt_lag_2
date_shop_item_avg_item_cnt_lag_3, date_shop_subtype_avg_item_cnt_lag_1,
date_city_avg_item_cnt_lag_1,date_item_city_avg_item_cnt_lag_1, delta_revenue_lag_1, delta_price_lag

Other feature month, days, item_shop_first_sale,item_first_sale

Table 1: List of final 32 features used in training the model. The features are grouped by their types:
Preprocessing based, Lag based and Other types(month,day, day of first sale information)

3

5 Model Selection

This section describes the models which we have used for our future sales prediction. In particular,
we have successfully used three decision tree based models namely, XGBoost, random forest, and
light GBM to get competitive performance. The models are described in the following subsections.

5.1 XGBoost

XGBoost [1] stands for extreme Gradient Boosting. It is an open source library providing a high-
performance implementation of gradient boosted decision trees (GBDT). The implementation of the
algorithm was engineered for efficiency of compute time and memory resources. A major design goal
is to make the best use of available resources to train the model. Some key algorithm implementation
features include: (a) Sparsity Aware implementation with automatic handling of missing data values.
(b) block Structure to support the parallelization of tree construction. To learn the set of functions
used in the model, XGBoost minimizes the following regularized objective.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (1)

Ω(f) = γT +
1

2
λ||w||2 (2)

Here l is a differentiable convex loss function that measures the difference between the prediction
ŷi and the target yi. The second term Ω penalizes the complexity of the model (i.e., the regression
tree functions). The additional regularization term helps to smooth the final learnt weights to avoid
over-fitting.

5.2 Random Forest

The random forest is a model made up of many decision trees. Rather than just simply averaging the
prediction of trees (which we could call a “forest”), this model uses two key concepts that gives it
the name random, and are described next. 1. Random Sampling of Training Observations When
training, each tree in a random forest learns from a random sample of the data points. The samples
are drawn with replacement, known as bootstrapping, which means that some samples will be used
multiple times in a single tree. The idea is that by training each tree on different samples, although
each tree might have high variance with respect to a particular set of the training data.Overall, the
entire forest will have lower variance but not at the cost of increasing the bias.At test time, predictions
are made by averaging the predictions of each decision tree. 2. Random Subsets of features for
splitting nodes The other main concept in the random forest is that only a subset of all the features
are considered for splitting each node in each decision tree. Generally this is set to sqrt(n_features)
for classification meaning that if there are 16 features, at each node in each tree, only 4 random
features will be considered for splitting the node. (The random forest can also be trained considering
all the features at every node as is common in regression.

5.3 Light GBM

For every feature,conventional implementations of GBDT scan all the data instances to estimate
the information gain of all the possible split points. Therefore, their computational complexities
will be proportional to both the number of features and the number of instances. This makes these
implementations very time consuming when handling big data. To tackle this issue Light GBM
(LGBM) [2] uses two novel techniques, namely Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB). In GOSS technique, when down sampling the data instances, in
order to retain the accuracy of information gain estimation, it is recommended to keep those instances
with large gradients (e.g., larger than a pre-defined threshold, or among the top percentiles), and
only randomly drop those instances with small gradients. EFB converts feature binding problem in
sparse feature space, to a graph coloring problem (by taking features as vertices and adding edges for
every two features if they are not mutually exclusive), and solving it by a greedy algorithm with a
constant approximation ratio. LGBM splits the tree leaf wise with the best fit whereas other boosting
algorithms split the tree depth wise or level wise rather than leaf-wise. So when growing on the same
leaf in Light GBM, the leaf-wise algorithm can reduce more loss than the level-wise algorithm and
hence results in much better accuracy which can rarely be achieved by any of the existing boosting
algorithms. Also, it is surprisingly very fast, hence the word ‘Light’.
Fig. 4 shows the relative importance of features for different decision tree models.

4

(a) (b) (c)

Figure 4: Comparison of feature wise importance for (a) LGBM, (b) XGBoost, and (c) random forest.

6 Model Evaluation

6.1 Results

Table 2 describes the performance on the validation and test set for our XGBoost, random forest
and LGBM based decision-tree based models. Also, here we present the model performances with
weighted ensembling of different models. As we can see the best performing model in terms of
both validation RMSE and test RMSE (leader board score) is the ensembling model of LGBM and
random forest with weight factor of 0.5 each. It is quite intuitive as ensembling tries to reduce the
random noise of the classification by balancing between the two models and thus can predict in a
better way. It is noteworthy that our best performing model provides a leaderboard RMSE of
0.87605 which achieved a class rank of 6 and Global rank of 62 in Kaggle.

Method Tuning type Validation Leaderboard
RMSE score

XGBoost naive (n) 0.898755 0.9075
grid-search (gs) 0.892129 0.89044

hyperopt (h) 0.891743 NE
Random-forest naive (n) 0.896694 0.88198

grid-search (gs) 0.89587 0.87957
LGBM naive (n) 0.904814 NE

grid-search (gs) 0.88636 NE
hyperopt (h) 0.8823 NE

Weighted ensemble
0.5*XGBoost(h) + 0.5*random-forest(gs) 0.887585 0.87808
0.5*LGBM(gs) + 0.5*random-forest(gs) 0.883526 0.876051

0.7*random-forest(gs) + 0.2*LGBM(gs) 0.887478 0.8786
+ 0.1*XGBoost(h)

Table 2: Validation RMSE and leaderboard scores for different models with different form of
hyper-parameter tuning schemes. Here NE=not evaluated.

6.2 Insights

Here we first present our insights from the models which worked better for the proposed problem
statement before summarizing the possible loop-holes for the failure of other models which did not
provide competitive RMSE.

6.2.1 Models Which Performed Well

Hyperparameter selection of the model to be trained plays a key role in the final performance. Here
we present some empirically achieved insights to guide proper training with the selected models.
Fig. 6(a) shows validation RMSE vs hyper-opt trials for XGBoost training. We see that the best
performing hyperparameterized model is found within 100 trial runs. Thus we can infer that 100
hyper-opt trials are enough for us to provide the best suited hyperparameter settings. In LGBM based
decision tree training two hyperparameters play key role for the model to not over-fit: 1. min data in

5

(a) (b)

Figure 5: Val RMSE performance of LGBM [3] as a function of two major hyperparameters (a) min
data in leaf and (b) num leaf .

leaf and 2. num leaf. We performed parameter sweep of one keep the other fixed to some value. As
shown in Fig. 5(a) we achieve the best performing validation RMSE at min_data_in_leaf value of
1000. We found the best value of num_leaf 1000 shown in Fig. 5(b).

6.2.2 Models Which Did Not Performed Well

Apart from the various decision-tree based models we also tried to formulate the prediction problem as
multi-layer perceptron (MLP) based regression problem. For the MLP we had chosen a model having
similar trainable parameters as the total number of training examples to avoid over or under-fitting.
Also, as there were various types of input variables having various range of values (for example, the
months are always in the range of 1 to 33, where as the item category wise count can be as large as
600000) we choose to min-max normalize Our objective was to minimize the mean square error loss.
However, after training the test RMSE could not reach the one achievable through the decision tree
based approaches. In particular, we recon few issues might be the reason for MLP to fail: 1. incorrect
normalization, 2. presence of both int and float type features, 3. improper selection of activation and
loss function. Another model we tried that did not work is support vector regressor (SVR). We used
sci-kit learn package of SVR. Two major reason to avoid SVR for the sales prediction problem are: 1.
Choice of kernel is tricky (we chose RBF kernel for our experiments), 2. SVR runs extreme slow.

(a) (b)

Figure 6: (a)Variation of validation error with hyper-opt trials.The trial giving the lowest validation
error is considered and marked here with a red dot. The hyperparameter corresponding to that trial is
selected as the best setting for XGBoost (b) Plot of mean training time (mean of 5 runs) for XGBoost,
random forest, LGBM. Standard deviation of run times denoted by black bars.

7 Conclusions

In this work we presented future sales prediction models based on decision tree structures. Our
evaluation showed the best performing model can be achieved through ensembling of LGBM and
random-forest giving equal weight to each.

References
[1] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd ACM SIG-KDD international conference on knowledge discovery and data mining,
pages 785–794, 2016.

[2] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in neural
information processing systems, pages 3146–3154, 2017.

[3] Guolin Ke et al. lightgbm.readthedocs.io. In https://lightgbm.readthedocs.io/en/latest/Features.html,
2017.

6

	Introduction
	Data description
	Data-Preprocessing
	Feature Engineering
	Data Exploration
	Item category and name based features
	Shop based features
	Mean encoded features and lag feature generation
	Other features
	Final feature set

	Model Selection
	XGBoost
	Random Forest
	Light GBM

	Model Evaluation
	Results
	Insights
	Models Which Performed Well
	Models Which Did Not Performed Well

	Conclusions

