Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References 0000000 00000000

Speech Emotion Recognition

Rajat Hebbar, Digbalay Bose, Somesh Sakriya

October 27, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References

Overview

- 1 Problem Definition
- 2 Emotion Recognition CMU MOSEI
 - CMU-MOSEI dataset
 - Training methodology
 - Network architectures
 - Features
 - Results
- 3 Emotion Recognition- MELD
 - MELD dataset
 - Features
 - Network Architectures
 - Training details
 - Results

References

Problem Definition

• Design a deep neural network based system for estimating emotional content in the speech.

Figure: Outline of the speech emotion recognition system

• Can invoke other modalities like video, text for augmenting the capabilities of speech based emotion recognition algorithms

CMU-MOSEI

• Details:

- 3.2k videos, 23k utterances, 1000 speakers
- Sentence level M-Turk annotations:
 - Likert sentiment scale [-3,3] (-3: highly negative, +3: highly positive)
 - 6 emotion labels: happiness, sadness, anger, fear, disgust, surprise
 - presence of emotion x annotated on Likert scale [0,3] (0: no evidence of x, 3: highly x)
- originally released Text-Audio-Visual features:
 - Glove embeddings
 - Facial landmarks, shape parameters, face embeddings, etc.
 - COVAREP acoustic features including 12 MFCCs, pitch, etc.
 - Words and audio aligned using P2FA forced alignment

Two stage training

- Instead of classification problem, emotion recognition posed as a regression problem because of the continuous scale used for labelling.
- Two stage training procedure involves the following:
 - First stage: Train the neural network for regression, where the regression output is a 1 × k vector, where k = number of distinct emotions.
 - **Second stage:** Freeze the first stage model layers till the embedding layer. Train *k* separate models for *k* emotions by considering as a single valued regression problem.
- Above procedure can be applied to any network and can be adopted for classification as well.

Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition - MELD Future work References References

Audio based models

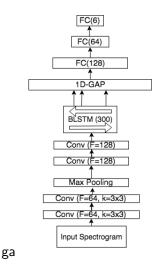


Figure: CLDNN architecture modified for 4 second inputs of CMU-MOSEI

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
	000000				

Audio based models

Layer	Support	Filt dim.	# filts.	Stride	Data size
conv1	7×7	1	96	2×2	254×198
mpool1	3×3	-	-	2×2	126×99
conv2	5×5	96	256	2×2	62×49
mpool2	3×3	·	H.	2×2	30×24
conv3	3×3	256	256	1×1	30×24
conv4	3×3	256	256	1×1	30×24
conv5	3×3	256	256	1×1	30×24
mpool5	5×3		= 1	3×2	9×11
fc6	9×1	256	4096	1×1	1×11
apool6	$1 \times n$	-	-	1×1	1×1
fc7	1×1	4096	1024	1×1	1×1
fc8	1×1	1024	1251	1×1	1×1

Figure: Original vgg vox architecture proposed in [1].67M parameters

Problem Definition

0000000

Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

・ロト ・聞ト ・ヨト ・ヨト

э

Audio based models

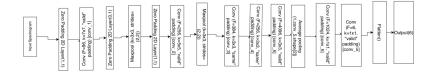


Figure: Vgg vox architecture modified for 4 second inputs of CMU-MOSEI

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
	0000000				

Features

- Audio : 64D log-mel spectrograms
 - 25ms window, 10ms shift
 - Inputs chopped to 4s segments (resulting in input size of 400×64)

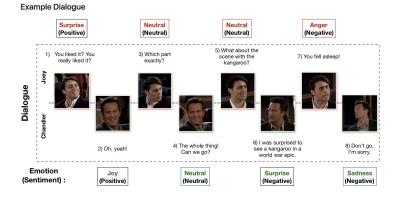
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
Doculto					

NESUILS

• Mean absolute error and mean squared error metrics are evaluated for the models associated with each emotion

Emotions		VGG_VOX_MSE	CLDNN_MAE	VGG_VOX_MAE
1	0.07	0.02	0.18	0.13
2	0.03	0.0164	0.11	0.084
3	0.03	0.0617	0.09	0.164
4	0.00	0.022	0.02	0.082
5	0.02	0.004	0.06	0.0466
6	0.01	0.0178	0.03	0.063


Table: MAE and MSE of the stage 2 models of VGG-vox and CLDNN

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

Multimodal Emotion-Lines Dataset (MELD)

- Dialogues from Friends TV Series
- Around 1400 dialogues consisting of 13000 utterances

Figure: Single dialogue in MELD [2]

Problem Definition Emotion Recognition - CMU MOSEI

Emotion Recognition- MELD Future work References References

Multimodal Emotion-Lines Dataset (MELD)

- Multimodal multi-party conversational dataset
- 7 emotion classes, including Neutral
- Highly imbalanced classes

	Train	Dev	Test
Anger	1109	153	345
Disgust	271	22	68
Fear	268	40	50
Joy	1743	163	402
Neutral	4710	470	1256
Sadness	683	111	208
Surprise	1205	150	281

Figure: Dataset Distribution [2]

Statistics	Train	Dev	Test
# of modality	{a,v,t}	{a,v,t}	{a,v,t}
# of unique words	10,643	2,384	4,361
Avg. utterance length	8.03	7.99	8.28
Max. utterance length	69	37	45
Avg. # of emotions per dialogue	3.30	3.35	3.24
# of dialogues	1039	114	280
# of utterances	9989	1109	2610
# of speakers	260	47	100
# of emotion shift	4003	427	1003
Avg. duration of an utterance	3.59s	3.59s	3.58s

Figure: Dataset Statistics [2]

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
		0000000			

Features

- Audio : 64D log-mel spectrograms
 - 25ms window, 10ms shift
 - Variable length input to network.
- Audio baseline: 6373 opensmile features (IS13-ComParE config)

- Text : 300D glove embeddings
 - each utterance padded to 50 words

Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

Audio-only

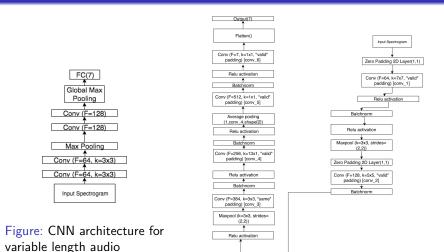
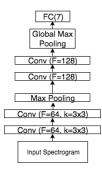
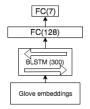




Figure: Modified vgg-vox

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
		00000000			

Text-only

Figure: BLSTM architecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: CNN architecture

Multimodal fusion

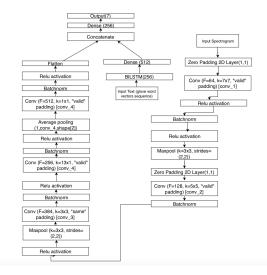


Figure: Modified VGG-vox with BLSTM for multimodal fusion

ж

Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

Training Parameters

• Handling class-imbalance with 1) class-weights, 2) balancing individual batches by oversampling minority class

- Batch size of 28 (4 samples/emotion/batch)
- Adam optimizer, Categorical cross-entropy loss
- Early stopping criterion with patience of 3-5
- Hyper-parameter tuning
 - Number of CNN-blocks, filter maps
 - Number of BLSTM units
 - Number and size of FC layers

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
		000000000			

Results

Audio

Model	Anger	Disgust	Fear	Joy	Neutral	Sadness	Surprise	w-avg
Poria et al. [2]	0.26	0.06	0.03	0.16	0.62	0.15	0.19	0.39
os-dnn	0	0	0	0.06	0.64	0	0	0.32
cnn-gmp	0.29	0.04	0.06	0.11	0.48	0.07	0.19	0.31
vgg-vox	0.24	0.08	0.04	0	0.62	0.06	0	0.34

Table: Per-class F1 score and weighted average score for audio

Text

Model	Anger	Disgust	Fear	Joy	Neutral	Sadness	Surprise	w-avg
Poria et al. [2]	0.42	0.22	0.08	0.54	0.72	0.27	0.48	0.56
cnn	0.31	0.02	0	0.34	0.53	0.16	0.4	0.4
blstm	0.37	0.14	0.1	0.52	0.67	0.24	0.48	0.53

Table: Per-class F1 score and weighted average score for text

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References
		00000000			

Results

Multimodal Fusion

Model	Anger	Disgust	Fear	Joy	Neutral	Sadness	Surprise	w-avg
Poria et al.	0.43	0.24	0.09	0.54	0.77	0.24	0.51	0.59
cnn-gmp + blstm	0.3	0.1	0.03	0.41	0.67	0.2	0.4	0.48
vgg-vox + blstm	0.38	0.15	0.07	0.5	0.72	0.24	0.48	0.55

Table: Per-class F1 score and weighted average score for audio

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem Definition	Emotion Recognition - CMU MOSEI	Emotion Recognition- MELD	Future work	References	References

Future work

- Posing CMU-MOSEI as a multi-class classification problem
- Due to class imbalance in MELD, training of hierarchical networks

- Utilizing visual cues for improving performance
- Temporal convolutions networks for audio

Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References 0000000 References

References I

- S. Albanie et al. "Emotion Recognition in Speech using Cross-Modal Transfer in the Wild". In: ACM Multimedia. 2018.
- Soujanya Poria et al. "MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations". In: *CoRR* abs/1810.02508 (2018).