
Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

Speech Emotion Recognition

Rajat Hebbar, Digbalay Bose, Somesh Sakriya

October 27, 2021



Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

Overview

1 Problem Definition

2 Emotion Recognition - CMU MOSEI
CMU-MOSEI dataset
Training methodology
Network architectures
Features
Results

3 Emotion Recognition- MELD
MELD dataset

Features

Network Architectures
Training details
Results

4 Future work

5 References



Problem Definition Emotion Recognition - CMU MOSEI Emotion Recognition- MELD Future work References References

Problem Definition

Design a deep neural network based system for estimating
emotional content in the speech.

Figure: Outline of the speech emotion recognition system

Can invoke other modalities like video, text for augmenting the
capabilities of speech based emotion recognition algorithms
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CMU-MOSEI

Details:
- 3.2k videos, 23k utterances, 1000 speakers
- Sentence level M-Turk annotations:

– Likert sentiment scale [-3,3] (-3: highly negative, +3: highly
positive)

– 6 emotion labels: happiness, sadness, anger, fear, disgust,
surprise

– presence of emotion x annotated on Likert scale [0,3] (0: no
evidence of x, 3: highly x)

- originally released Text-Audio-Visual features:

- Glove embeddings
- Facial landmarks, shape parameters, face embeddings, etc.
- COVAREP acoustic features including 12 MFCCs, pitch, etc.
- Words and audio aligned using P2FA forced alignment
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Two stage training

Instead of classification problem, emotion recognition posed as
a regression problem because of the continuous scale used for
labelling.

Two stage training procedure involves the following:

- First stage: Train the neural network for regression, where the
regression output is a 1 × k vector, where k = number of
distinct emotions.

- Second stage: Freeze the first stage model layers till the
embedding layer. Train k separate models for k emotions by
considering as a single valued regression problem.

Above procedure can be applied to any network and can be
adopted for classification as well.
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Audio based models

ga

Figure: CLDNN architecture modified for 4 second inputs of CMU-MOSEI

‘
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Audio based models

Figure: Original vgg vox architecture proposed in [1].67M parameters
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Audio based models

Figure: Vgg vox architecture modified for 4 second inputs of CMU-MOSEI
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Features

Audio : 64D log-mel spectrograms

- 25ms window, 10ms shift
- Inputs chopped to 4s segments (resulting in input size of

400 × 64)
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Results

Mean absolute error and mean squared error metrics are
evaluated for the models associated with each emotion

Emotions CLDNN MSE VGG VOX MSE CLDNN MAE VGG VOX MAE
1 0.07 0.02 0.18 0.13

2 0.03 0.0164 0.11 0.084

3 0.03 0.0617 0.09 0.164

4 0.00 0.022 0.02 0.082

5 0.02 0.004 0.06 0.0466

6 0.01 0.0178 0.03 0.063

Table: MAE and MSE of the stage 2 models of VGG-vox and CLDNN
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Multimodal Emotion-Lines Dataset (MELD)

Dialogues from Friends TV Series

Around 1400 dialogues consisting of 13000 utterances

Figure: Single dialogue in MELD [2]
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Multimodal Emotion-Lines Dataset (MELD)

Multimodal multi-party
conversational dataset

7 emotion classes,
including Neutral

Highly imbalanced classes

Figure: Dataset Distribution [2]

Figure: Dataset Statistics [2]
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Features

Audio : 64D log-mel spectrograms

- 25ms window, 10ms shift
- Variable length input to network.

Audio baseline: 6373 opensmile features (IS13-ComParE
config)

Text : 300D glove embeddings

- each utterance padded to 50 words
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Audio-only

Figure: CNN architecture for
variable length audio

Figure: Modified vgg-vox
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Text-only

Figure: CNN architecture

Figure: BLSTM architecture
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Multimodal fusion

Figure: Modified VGG-vox with BLSTM for multimodal fusion
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Training Parameters

Handling class-imbalance with 1) class-weights, 2) balancing
individual batches by oversampling minority class

Batch size of 28 (4 samples/emotion/batch)

Adam optimizer, Categorical cross-entropy loss

Early stopping criterion with patience of 3-5

Hyper-parameter tuning

Number of CNN-blocks, filter maps
Number of BLSTM units
Number and size of FC layers
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Results

Audio

Model Anger Disgust Fear Joy Neutral Sadness Surprise w-avg
Poria et al. [2] 0.26 0.06 0.03 0.16 0.62 0.15 0.19 0.39
os-dnn 0 0 0 0.06 0.64 0 0 0.32
cnn-gmp 0.29 0.04 0.06 0.11 0.48 0.07 0.19 0.31
vgg-vox 0.24 0.08 0.04 0 0.62 0.06 0 0.34

Table: Per-class F1 score and weighted average score for audio

Text

Model Anger Disgust Fear Joy Neutral Sadness Surprise w-avg
Poria et al. [2] 0.42 0.22 0.08 0.54 0.72 0.27 0.48 0.56
cnn 0.31 0.02 0 0.34 0.53 0.16 0.4 0.4
blstm 0.37 0.14 0.1 0.52 0.67 0.24 0.48 0.53

Table: Per-class F1 score and weighted average score for text
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Results

Multimodal Fusion

Model Anger Disgust Fear Joy Neutral Sadness Surprise w-avg
Poria et al. 0.43 0.24 0.09 0.54 0.77 0.24 0.51 0.59
cnn-gmp + blstm 0.3 0.1 0.03 0.41 0.67 0.2 0.4 0.48
vgg-vox + blstm 0.38 0.15 0.07 0.5 0.72 0.24 0.48 0.55

Table: Per-class F1 score and weighted average score for audio
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Future work

Posing CMU-MOSEI as a multi-class classification problem

Due to class imbalance in MELD, training of hierarchical
networks

Utilizing visual cues for improving performance

Temporal convolutions networks for audio
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