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An application of functional data analysis (FDA) (Ramsay and Silverman, 2005, Functional Data
Analysis, 2nd ed. (Springer-Verlag, New York)) for linguistic experimentation is explored. The
functional time-registration method provided by FDA is shown to offer novel advantages in the
investigation of articulatory timing. Traditionally, articulatory studies examining the effects of
linguistic variables such as prosody on articulatory timing have relied on comparing the durations
of speech intervals of interest defined by kinematic landmarks. Such measurements, however, do not
preserve information on the detailed, continuous pattern of articulatory timing that unfolds during
these intervals. We present an approach that allows the analysis of entire, continuous kinematic
trajectories obtained in a movement tracking experiment examining the influence of a phrasal
boundary on articulatory patterning. FDA time deformation functions, after alignment of test and
reference (control) signals, reveal delaying of articulator movement (i.e., slowing of the internal
clock rate) in the presence of a phrase boundary as the speech stream recedes from the boundary.
This is a theoretically predicted pattern (Byrd and Saltzman, 2003, The elastic phrase: Modeling the
dynamics of boundary-adjacent lengthening, Journal of Phonetics 31, 149-180.), which would be
more difficult to validate with a traditional interval-based approach. It is concluded that the FDA
time alignment method provides a useful tool for characterizing timing patterns in linguistic
experimentation based on continuous kinematic trajectories. © 2006 Acoustical Society of

America. [DOL: 10.1121/1.2161436]
PACS number(s): 43.70.Jt, 43.70.Bk [AL]

. INTRODUCTION
A. Background

In the past, experiments testing for the effects of linguis-
tic variables on the temporal patterning of articulation have
relied on comparing the durations of articulatory intervals
defined piecewise by kinematic landmarks. For example, a
number of articulatory movement tracking studies have
shown that lengthening of articulatory movements occur at
prosodic boundaries (Edwards et al., 1991; Beckman and
Edwards, 1992; Byrd and Saltzman, 1998; Byrd, Kaun,
Narayanan, and Saltzman, 2000; Fougeron, 2001; Cho and
Keating, 2001; Tabin, 2003; Keating et al., 2004; Cho, in
press; and Tabain and Perrier, 2005). The previous articula-
tory studies of this sort have relied on kinematic landmarks
such as movement edges/extrema and peak velocities to de-
fine speech intervals of interest and compare their durations.
Such measurements, however, lack information on the de-
tailed pattern of articulatory timing that unfolds along the
time dimension during the durational periods. It is expected
that an examination of articulatory trajectories in a continu-
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ous way can reveal such timing evolution and thus can fa-
cilitate an understanding of the linguistic patterning.

The statistical framework called functional data analysis
(FDA), introduced by Ramsay (1982; followed by Ramsay
and Silverman, 1997, Ramsay and Silverman, 2005), offers a
novel alternative that can consider entire, continuous Kine-
matic trajectories obtained in various experimental condi-
tions. FDA allows the deformation or warping of these tra-
jectories over time to be characterized and compared within
and across subjects in evaluating the linguistic variable of
interest. For example, prosodic models that seek to explain
how speakers modulate the spatiotemporal organization of
articulatory gestures as a function of their phrasal position
are particularly informed by examining continuous kinematic
trajectories. It has been hypothesized that the internal “clock
rate” that controls the temporal unfolding of utterances is
slowed as a phrase boundary is approached and speeds up
again as the boundary recedes (Byrd and Saltzman, 2003).
Because such a change in articulatory dynamics is best de-
scribed in the continuous time dimension, it is hypothesized
that the FDA time alignment method will be able to detect
such local temporal fluctuation of gestural activation near
prosodic boundaries. In addition, the resulting continuous
time warping functions provide data useful in constructing
and verifying such models.

While most conventional statistical methods process a
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collection of individual data points, the FDA statistical
framework is designed to process a collection of functions or
curves (Ramsay and Silverman, 2005). The term “func-
tional” reflects a view that by expressing discrete data in a
functional form, one can better represent the underlying con-
tinuity of the physical or physiological system generating the
data. Each curve is regarded as a sample of an underlying
common pattern. It also permits a more natural way to utilize
its derivatives (e.g., velocity and acceleration) for system
description or modeling. In practice, such a functional repre-
sentation of data is achieved by converting the raw sampled
data points into a continuous function based on basis func-
tion expansion and smoothing.

The FDA framework provides novel data processing and
statistical analysis algorithms for the creation and explora-
tion of functional data (Ramsay and Silverman, 2005). Spe-
cifically, two essential data processing methods in the FDA
framework are functional data smoothing and functional time
alignment or time registration methods. These methods have
been developed to prepare data for further analysis in the
FDA framework, such as functional analysis of variance,
functional principal component analysis, and functional ca-
nonical correlation analysis. They can be equally useful for
other applications in which data smoothing or time registra-
tion of sequential data is desirable. In fact, the motivation of
this study is to extend the usefulness of the functional time
registration method applied for articulatory speech produc-
tion studies.

The FDA time registration method has been applied in
the analysis of lip movements (Ramsay, Munhall, Gracco,
and Ostry, 1996), in aligning laryngeal and audio signals
(Lucero ef al., 1997; Lucero and Koenig, 2000), in the vari-
ability analysis of oral airflow data in children’s speech
(Koenig and Lucero, 2002), and in the variability study of
VCYV articulation (Lucero and Lofqvist, 2005). However, in
these studies the main focus has been either to demonstrate
the FDA time registration method or to estimate signal aver-
age and variability in an optimal way from repeated produc-

tions of the same utterance. Here we present an extended use
of the FDA time registration method for the analysis of ki-
nematic articulatory trajectory data obtained in different lin-
guistic conditions. Specifically, we investigate the difference
in tongue-tip temporal patterning in two contrasting prosodic
environments, namely, in the presence and absence of an
intonational phrase boundary.

B. FDA functional data smoothing

Functional data smoothing is the first step of any data
analysis in the FDA framework, and its purpose is to convert
raw discrete data points into a smoothly varying function.
This emphasizes patterns in the data by minimizing short-
term deviation due to measurement errors or inherent system
noise. We will give a brief mathematical outline of the FDA
smoothing method.

In Ramsay and Silverman (1997, 2005), a preferred ap-
proach to the functional data smoothing is the classic least
square error minimization method augmented with a regular-
ization term or “‘roughness penalty” for the control of degree
of smoothness, and the cost function F to be minimized is set
to

4
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Fley\) =3 [y - y(6) P+ f (%ym) a, ()
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where x; denotes an observed value at time #; in a discrete
data sequence x, y(7) is the function to be estimated from the
observed sequence x, A is a smoothing parameter, and
“d*/dr* denotes the fourth-order time derivative. Now the
function y(¢) is modeled as a linear combination of a set of

basis functions,
K
(1) =2 eril0), (2)
k=1

where ¢, (1) is the kth basis function with weight ¢;, and K is
the number of basis functions. Then the task of the functional
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FIG. 1. An example output of FDA smoothing using a
tongue tip velocity trajectory. A set of 20 B-splines of

order 6 was used for smoothing, but the penalty param-
eter N was varied—1E-9 for the top panel and 1E-12 for
the bottom panel. The dotted line in each panel repre-
sents the original signal and the solid line the smoothed
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data smoothing is to find the coefficients ¢y, which minimize
the cost function F through an iterative minimization proce-
dure.

The choice of basis function depends on the temporal
characteristics of data. B-splines (de Boor, 2001) are the
typical choice for nonperiodic observation sequences. The
smoothing parameter \ is introduced for balance between
exact data fitting and smoothing through the roughness
penalty.1 If N becomes close to zero, a more exact data fitting
will occur as the cost function computation is dominated by
the minimization of the least square error term. It is noted
that the fourth-order time derivative of y(r) is used in the
roughness penalty term in order to guarantee the smoothness
of the second-order time derivative of y(r), which is related
to the curvature of y(¢). An output of the FDA data smooth-
ing based on Eq. (1) is illustrated in Fig. 1 for a tongue tip
kinematic velocity trajectory. A set of 20 B-spline basis func-
tions of order 6 with two N values (1E-9 and 1E-12) are
tested. The dotted line in each panel represents the original
signal. It can be seen that, for a given number of basis func-
tions and order, the choice of \ is critical to faithfully repre-
sent the original signal. In fact, the choice of A was found to
be more important in data smoothing than the selection of
the order and number of B-splines. By appropriately select-
ing N\ and the order and number of basis functions, one can
achieve a flexible approximation of discrete data into a func-
tional form.

C. FDA time registration method

Time alignment or registration refers to an operation by
which signals are aligned in time so that a measure of dis-
tance between the signals and a reference is minimized. As
illustrated in Fig. 2, it is common to observe that signals
obtained under the same experimental condition differ in the
timings (or phase) and amplitudes of signal landmarks (e.g.,
major peaks and valleys, zero-crossings), even after duration
normalization by an equal-point resampling. The objective of
time alignment is to find a common time path between two
signals with different properties (one designated the refer-
ence signal and one designated the test signal) by expanding
or compressing the physical or clock time of a test signal
against the reference. The resulting common time path or
“time warping function” represents an intersignal timing re-
lation, that is, local advancing or slowing of the internal or
system time of a test signal with respect to the physical or
clock time of the reference signal. We describe below the
conceptual outline of the FDA time registration method
adapted for this study. For mathematical details, the reader
should refer to Ramsay and Silverman (2005).

Once test and reference signals are represented as func-
tional forms through the FDA smoothing, the task of FDA
time registration is to find a smooth time warping function
h(r) that minimizes the difference or distance between test
and reference signals. In Ramsay and Silverman (1997,
2005), a general approach to FDA time registration is formu-
lated as finding A(f) by minimizing the cost function
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FIG. 2. (Top) Plots of the velocity profiles of control utterances (12 reps) for
subject A before time alignment (left) and after time alignment (right). (Bot-
tom) Plots of the velocity profiles of test utterances (12 reps) for subject A
before time alignment (left) and after time alignment (right). It is clear that
signal average and variability can be measured more accurately after time
alignment. (Middle) The middle panel also shows a time deformation func-
tion for the control signals compared to reference.

T

T
D(x,y,\,w) =f [X[A(D)] - y(0)]* dt + )\f w(t)?dt, (3)
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)

where A(z) is the time warping function to be determined, A
is a smoothing parameter, w(z) is a smoothness control func-
tion for A(¢), and T is the end point of the time path. One can
note that the form of the cost function is the same as that of
the FDA smoothing, that is, the least square minimization
augmented with a roughness penalty term.

Since the dimension of A(z) is time, it should be strictly
increasing or monotonic and its time derivative should al-
ways be positive. Based on these constraints, /() can be set
to satisfy Eq. (4):

d*h(1)
dr

10
_w(t) i . (4)

That is, the first time derivative of h(f), not A(z) itself, is
modeled as an exponential growth function, and w(z) con-
trols the behavior of A(f).> For instance, when w(z) is posi-
tive, the rate of internal time change of the test signal A(¢) is
slowed when compared to the physical time [i.e., h(f)>1],
and thus the test signal runs “late.” That is, the same land-
mark occurs later in clock time when compared to the refer-
ence signal. It is noted that the square of w(z) is used as the
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TABLE I. Sentence 2 is testing the rightward effect: the boundary is after the first consonant, and the conso-
nants to be measure are D D N. Sentence 1 is the control sentence and contains no boundary.

Effect Consonants Sentence

Control NDDN Birdhunting, we were shocked to see a new dodo
knocking on wooden posts

Rightward effect N #DDN At the zoo, we were shocked to see a Gnu. Dodo

knocking about, however, would have been more
surprising

regularization term in Eq. (4), which is equivalent to the
square of “relative curvature” of h(z) [i.e., the second time
derivative of h(r) scaled by its first derivative].

The general solution of Eq. (4) is obtained by integrating
it twice; the solution is

T u
h(r)=Cy+ le exp J w(v)dv |du, (5)
0 0

where C, and C; are so determined that 2(0)=0 and h(T)
=1. C, represents a linear time shift, and 7 is the end point of
normalized time. 7 can be set to 1 without a loss of gener-
ality if durations of test and reference signals are normalized
before time registration. This is a usual practice in the FDA
time alignment procedure.

Now, the task of finding the monotonic time warping
function A(z) is reduced to the task of determining w(r). For
that purpose, w(z) is expressed as a linear combination of
basis functions as in Eq. (2), and A(¢) can be determined from
w(t) which minimizes the cost function given in Eq. (3).

Because our major interest is in timing, we focus on
timing differences in landmarks occurring in both test and
reference articulator velocity patterns. Therefore, the land-
mark time registration with the aforementioned monotone
smoothing method is used in this study in order to take ad-
vantage of the clear landmark locations observed in the ve-
locity patterns. The landmark time registration accepts pre-
determined signal landmark time points as break points, and
performs time alignment between two adjacent landmark
points by linear shifting and scaling of the basis functions.
Twelve B-splines of the order 4 and N value of 1E-12 are
used to represent w(¢) in this study. All the computations are
based on MATLAB implementations of the FDA smoothing
and time registration algorithms publicly available at ftp://
ego.psych.mcgill.ca/pub/ramsay/FDAfuns/.

Il. METHOD
A. Speech materials

A subset of speech materials described in a previous
study (Byrd et al., 2004, submitted) were used and the
stimuli are given in Table I. The goal was to study rightward
phrase boundary effects using sentences with the same pho-
nological string varying in the presence or absence of an
intonational phrase boundary.

The target sequence in each sentence was
[...nV dV dV nV...]. The Carstens Articulograph (AG200)
was used to track a sensor adhered to the tongue tip. Sensors
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were also tracked on the maxilla and bridge of the nose for
head movement correction, and a sample of the occlusal
plane of each subject was acquired. Sensor position was
sampled at 200 Hz during articulation. After data collection,
the tongue-tip sensor position data was corrected for head
movement and rotated to the occlusal plane. The tongue tip y
(vertical) signal was differentiated in order to derive the
tongue-tip movement velocity. The position and velocity data
were smoothed before and after differentiation with a ninth-
order Butterworth filter of cutoff frequency 15 Hz. Four na-
tive speakers of American English participated. Subjects read
each sentence 12 times and were instructed to read in a ca-
sual, conversational style. Subjects will be referred to as
Subject A, Subject D (the second author), Subject E, and
Subject J.

Because this experiment was designed to investigate
tongue tip trajectories for alveolar consonants, we will de-
note the target sequence for ease of presentation as [D D N].
The control sentence contained the sequence [D D NJ] with
no preceding phrase boundary. To examine the rightward ef-
fect of the phrase boundary, the consonants [#D D N] with a
preceding intonational phrase boundary (sentence 2) were
compared against the same sequence in the no-boundary
control utterance. Each target sequence [D D N] (from the
onset of /d/ to the closure of /n/) is identified in all sentences.
The initial edge was defined as the zero-crossing associated
with the peak tongue tip raising movement for [d] and the
final edge as the zero-crossing associated with the peak
tongue tip raising movement for the [n]. Then the velocity
signals were processed for each subject using the FDA time
alignment procedure described in the next section.’

B. Time alignment procedure

First, a linear time normalization is applied to each in-
dividual velocity signal by resampling so that each signal has
200 equally sampled data points (see Fig. 1). Twenty
B-splines of the order 6 and N value of 1E-12 are used for
smoothing. A reference signal for each subject is then deter-
mined from control signals (those without a phrase boundary
before the target string) as follows: Initially, an average of
the control signals is computed and used as an initial refer-
ence signal for time alignment. After time alignment, an av-
erage of time-aligned control signals is computed again and
used as a reference. Next, test signals (those having a phrase
boundary before the target string) are subject to the landmark
time registration with respect to the reference signal, and
each time warping function is computed against the refer-
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FIG. 3. Time deformations of test signals with respect to the reference for subject A (top left), subject D (top right), subject E (bottom left), and subject J
(bottom right). The plots indicate delay or slowing (deformation in the positive direction) of tongue tip articulation in the test condition as compared to the
control condition. Note the general asymmetric shapes of deformation patterns. Variability among repetitions is also observed for the degree of slowing, but

the slowing shows a similar patterning over time.

ence signal. For landmarks, the internal four zero-crossings
of each test signal (see Fig. 2) are used as internal break
points. The zero-crossings selected as landmarks correspond
to time points where the tongue tip is about to move away
from the position extrema. After time alignment, a time de-
formation function Fy.() is computed as follows:

Ftesl(t) = htest(t) - href(t) ’ (6)

which represents a delay [Fq(f)>0] or advance [F (1)
< 0] of the internal clock time of a test signal with respect
to the reference.

It may be noted that there are several ways to do time
alignment between two groups of signals: select one typical
control signal as a reference and compare it with all test
signals, or compare averaged signals (i.e., averaged control
and averaged test signals), or, as in this study, compare test
signals to a reference signal that is created by averaging the
control signals. We chose the last method because the vari-
ability in timing among control signals is much less than that
between test and control signals or within the set of test
signals (see Fig. 2); therefore, the use of an averaged refer-
ence signal can be justified. Further, whereas the global
alignment procedure (i.e., time alignment without land-
marks) was used to create the reference signal, landmark
alignment was chosen to compare test to reference due to the
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high temporal variability present in the test signals, the rela-
tive computational efficiency of the landmark alignment pro-
cedure, and the relevance of articulatory events to this study.
In Fig. 2, tongue tip velocity profiles for control and test
utterances are shown before and after FDA time alignment
(subject A).

lll. RESULTS

In Fig. 3 the resulting time deformation functions of
each individual test signal for subjects A, D, E, J are shown.
[Figure 2 (middle panel) shows a comparable deformation
function for control utterances only (Subject A).] Because a
linear time normalization is done before the time alignment,
the resulting time warping or deformation function reflects
nonlinear, local timing variations in tongue tip closing and
release gestures. It is noted that because end points for this
analysis are anchored or “pinned” at the edges of the interval
of interest, timing effects at the two end points of the overall
interval of interest are not discernable.

One can clearly observe detailed patterns of delay rela-
tive to the reference pattern of articulator movement as the
speech stream recedes from the phrase boundary (recall that
the initial and final end points are fixed and are not informa-
tive). Generally these temporal modifications due to the pres-
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ence of the phrase boundary become reduced as time elapses,
i.e., the temporal perturbation is largest close to the boundary
and diminishes more remotely (Byrd and Saltzman, 2003) as
can be seen by the skew of the time deformation functions
and the steeper onset slope than falloff slope of the functions.
It is also observed that although there are differences in the
amount of time deformation among repetitions, the patterns
are fairly similar across repetitions for most subjects. These
observations would be difficult to isolate with the conven-
tional landmark-based articulatory timing measurements.

IV. CONCLUDING REMARKS

We conclude from the results of this articulatory kine-
matic experiment analyzed with FDA time registration that
rightward prosodic effects on articulation are greatest locally
at the boundary and decrease with distance from the bound-
ary. Such a pattern of delay adjacent to a phrase boundary
diminishing with distance from the boundary is predicted
within the prosodic m-gesture model of Byrd and Saltzman
(2003).

In the past, experiments testing for the effects of linguis-
tic variables on the temporal patterning of articulation have
relied on comparing the durations of intervals defined piece-
wise by kinematic landmarks such as movement edges/
extrema and peak velocities. FDA offers a novel alternative
that considers entire, continuous kinematic trajectories ob-
tained in various experimental conditions so that the defor-
mation or warping of these trajectories over time can be
characterized and compared within subject as well as across
subjects.

The FDA smoothing and time registration method can
be potentially useful for any applications where data smooth-
ing or time alignment of articulatory trajectories is desirable.
In addition, the coefficient set obtained by the FDA smooth-
ing can be used as feature vectors for pattern classification or
categorization of time series data including articulatory tra-
jectories. Finally, by integrating the time deformation func-
tions one also can quantify the degree of time deformation,
which should be useful to model the strength of boundary
types. In the future, we will explore the use of time deriva-
tives of the time deformation function in conjunction with
kinematic trajectories for describing articulatory dynamics
associated with linguistic conditions.
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'Because the criteria for an optimal degree of smoothness seems fuzzy and
can be subjective and problem dependent, it is unclear whether an automatic
way to estimate some essential smoothing parameters (e.g., the degree and

number of basis functions and \) can be optimally formulated within the
FDA framework.

’In general, an exponential growth function g(z) is modeled as dg(r)/dr
=rg(t), where r is a growth rate. One more time derivative of the exponen-
tial growth model with a time-dependent growth rate will yield the model
equation of the time warping function h(r).
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*It is noted that the velocity signal has been chosen for time alignment for
two main reasons. First, the velocity pattern has traditionally been used for
the analysis of skilled movements because underlying dynamic parameters
that describe the motion can be derived from the velocity patterns (cf.,
Nelson, 1983). Second, a velocity pattern has well-defined landmarks (e.g.,
extrema and zero crossings), which facilitates the FDA landmark time reg-
istration. We confirmed that as long as the same landmark time points are
used, the time deformation functions estimated from position are effectively
the same as those estimated using the velocity pattern.
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