Onset vs. Coda Clusters

Consequences of strength difference:

- Planning time
- Acquisition
- Topology difference
- C-center
- variability
- weight

CC in onset vs. coda: possible coupling graph differences

- Hypothesis: No competitive coupling in coda for English
- Less stong V - C coupling doesn't attract more distant c

Coda

- Can account for differences between onset and coda in:
It timing (c-center)
- syllable weight
- variability

Weightlessness of Onsets

- Onset Cs typically do not contribute to syllable weight.
- Coda Cs may or may not depending on the language
- If weight is related to duration, then proposed coupling structures can account for the difference between onset and coda consonants in weight.
- With synchronous onset coupling, effect of rightward shift is that adding Cs to onset does not increase syllable duration as much as when such coupling is lacking.

- Languages in which coda Cs do not bear weight are predicted to show competitive coda coupling.

Timing stability: onsets vs. codas

- Timing between C gestures is more stable in onset clusters than in coda clusters (Byrd, I996).

Graph Structure: Steady-State Relative

 Phases, "Competition" and Loop Constraints- Steady-state relative phase values are influenced by graph topology
- Codas: Open chains or tree-structures
- all target relative phases can be attained
- no "competition" between target relative phases
- Onsets: Closed loops add constraints
- only target relative phase patterns compatible with loop constraints can be attained
- "competition": resultant steady-state relative phase pattern is an overconstrained, least-squares solution that minimizes potential energy associated with interoscillator coupling forces.
- loop constraint equations can be derived from the geometry of the incidence matrix.

Speech Simulation Results II: Greater Stability for Onsets

- Add noise to simulations using 5 node +5 link graph
- Noise source: $\xi_{i}(\mathrm{t})=$ Gaussian, zero mean, unit variance
- st.dev. of noise ("strength"), β, varied across conditions
- $\beta \xi_{i}(\mathrm{t})$ added as acceleration forcing term to each component oscillator
- Result: Greater steady-state relative phase stability (lower standard deviation, $\sigma_{s s}$) for clusters in onsets than codas
std. of C-C phase (radians)

Onsets

Codas
std. of noise

Settling Time: Simulations (Nam)

- Because the in-phase attractor has a steeper well, its coupling strength is stronger.
- Relative phase settles at its target more quickly (Schöner et al, 1985)
- Results of I 50 simulations each of
- in-phase (3X stronger coupling)
- anti-phase
- Random starting phases

Planning time experiments (Mooshammer et al, 2012)

- If settling of oscillators is part of production planning process, this predicts that CV syllables should be ready for triggering earlier than VC.
- Task:
- delayed naming
- Measure:

Get Ready
(Say "uh")
PAY
go!
PAY

- Lag from 'go' signal to acoustic onset of response
- Participants:
- 20 American English
- Materials:
- VC, CV
- V :/el/ ('Kay’- ‘ache’) /i:/ ('Key'-‘eke’)

- C:/p,t,k, s,l/

Results

- CV initiated significantly faster than VC

- Smaller effect for stops could be due to use of acoustic RT measure:
- Acoustic onset for stops was measured at release burst.
- Closure interval of initial voiceless stops (but not/s/ or $/ \mathrm{I}$) is included in lag.

Articulatory Replication

- Method

- EMA
- Lag from 'go' signal to onset of constriction-directed movement for the initial gesture.
- 4 participants
- only /ei/ vowel context
- Results
- CV significantly faster
- no interaction with C

Acquisition of syllable structure

 (Nam, Goldstein \& Saltzman, 2009)- Infants develop onsets (CV) before codas (VC) in all languages. (e.g.Vihman \& Ferguson, 1987; Fikkert, 1994)
- Lag in acquisition of codas is shorter in languages that make more frequent use of VC (Roark \& Demuth 2000).
- Unlike single Cs, (intelligible) production of CC is observed earlier in codas than in onsets (e.g. Macken, 1977)
- These facts are all predicted by a model of a learning agent that includes both:
- Greater accessibility in-phase mode
- Attunement to $\mathrm{C} \leftrightarrow \mathrm{V}$ phase in the ambient language

Model of phase learning:

Representation \& attunement

- "neural" units represent values of a phase continuum Selected value 2°

- neural units are slightly attracted to the phase value that has matched an adult utterance (tuning or learning)
- Units are selected at random from production.
- Distribution is flat at outset

- Probability of selecting a matched phase value increases

Simulation Conditions

- Adult Frequency modes
- $\mathrm{CV}>\mathrm{VC}$
- $\mathrm{CV}=\mathrm{VC}$
- $\mathrm{CV}<\mathrm{VC}$

Results

Paradox:Acquisition of CC

- In many languages, consonant clusters can be acquired in coda before onset (opposite result from single Cs).
- English, Dutch, Spanish, German, Telegu
- This is predicted by phase learning model
- Weaker V-C coupling in Coda makes it easier to learn to produce $\mathrm{C}-\mathrm{C}$ sequencing

Extension of Phase Learning

 Model to Clusters- Add 2nd C to learners experience.
- Coupling graph has to be learned:
- C-C
- C-V (orv-C)
- Development of C-C mode is faster in coda than in onset:
- less strong competing synchronization

Graph Structure: Relative Phase Variability and the Connectivity Index

- Variability of steady-state relative phases is influenced by graph topology
- Sensible, since the variability of relative phase between the $i^{\text {th }}$ and $j^{\text {th }}$ oscillator should reflect:
- total number of unique paths between them (directly)
- more paths enhance stability
- length (number of links) of each of these paths (inversely) - short/direct paths will enhance stability more than longer paths
- strength of each link along the paths (multiplicatively)
-a weak link will diminish the strength of the entire path
- Connectivity index, $G_{i j}$, for nodes $i \& j$: $n_{i j}=$ number of paths between
$(10) G_{i j}=\sum_{k=1}^{n_{i j}}\left(\frac{1}{p_{i j k}} \prod_{q=1}^{p_{i k}} \alpha_{i j k q}\right)$

$$
\begin{gathered}
\text { nodes } i \& j ; \\
p_{i j k}=\text { length of } k^{\text {th }} \text { path between } \\
\text { nodes } i \& j ; \\
\alpha_{i j k g}=\text { strength of } q q^{\text {th }} \text { link in } k^{\text {th }} \text { path } \\
\text { between nodes } i \& j
\end{gathered}
$$

Simulation: Standard Deviation and G_{ij}

- Tested $G_{i j}$ on 4-node, graph with 100 simulation trials:
- nonuniform coupling strengths $\left(\alpha_{k}\right)$
- varied randomly from 0-I
- maximum of 2 deleted links $\left(\alpha_{k}=0\right)$ per trial

maintain a connected graph with at least I loop
- Simulation conditions
- all relative phase targets $=0^{\circ}$
- noise, $.05 \xi_{i}(\mathrm{t})$, added to each component oscillator as acceleration forcing term
$\square \xi_{i}(\mathrm{t})=$ gaussian, zero mean, unit variance

