The Gestural Structure of Speech
Communicative Process

• Two people chatting.

• What are they doing?

• Talker attempts to convey to listener:
 • Story, thoughts, emotions, questions, etc.
 • Convey means that somehow a copy of these are created in the mind of the listener.

• What actions does the talker take to do this?
Dance of the Vocal Organs
Other visualizations of dance

Maureen Stone VTVL

Tuesday, September 2, 14
3D Imaging
Secrets of the Dance...

- All the information in our messages (thoughts, ideas, etc.) of arbitrary complexity must ultimately be associated with unique simple dances.

- We can convey a potentially infinite number of different messages... infinite number of dances.

- Where in the dance is the information???
Words

• Words (or, morphemes) are elements of a language that have distinct meanings and which are also associated (arbitrarily) with distinct "dances" of the vocal tract organs.

• This is the informational or contrastive function of the dance.

• Despite differences among individual speakers, some essential properties of the mapping must be the shared for all speakers of a given language.

• Where in the dance do the essential properties reside?
• How do individuals perform the dance differently?
Gesture Hypothesis

• Dance can be decomposed into steps or gestures:

• A gesture is...

 • a constriction action of one of the vocal tract organs.

 • For example, the words "bad", "pad", "meter", and "Bingo" all begin with closure gesture of the lips organ.

 • We observe that in producing such words, speakers' upper and lower lips always come together to form tight seal.

 • This closure action is an essential property of the dance for these words.
Gestures as *units of information*

- Gestures are themselves meaningless, but they function to distinguish words (minimal messages units) from one another.

- Gestures of *distinct constricting organs* can be used to distinguish words from one another in all languages.

- For example:
 - "bad" begins closure gesture of the lips organ.
 - "dad" begins with a closure gesture of the tongue tip organ.
 - "gal" begins with a closure gesture of the tongue body organ.
Oral Constriction Gestures

LIPS

Tongue Tip

Tongue Body
Constriction Gestures: markers

LIPS

Tongue Tip

Tongue Body
Gesture production

• Each gesture can be thought of as a (motor) “task” to achieve a goal for a particular task variable.

• for example, the task in producing a consonants like /b, p, m/ is to reduce the distance between the lips (Lip Aperture, the task variable) to zero (the goal).

• What might be relevant goals and task variables for consonant and vowel gestures?

• The change over time of the state of the task variable can be controlled by a dynamical system with a target and a stiffness, like a spring that returns to its rest position.

• The changing state causes changes in the articulators of the vocal tract that can produce those state changes.
Gesture task variables

<table>
<thead>
<tr>
<th>Task</th>
<th>Articulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>lip protrusion</td>
</tr>
<tr>
<td>LA</td>
<td>lip aperture</td>
</tr>
<tr>
<td>TTCL</td>
<td>tongue tip constrict location</td>
</tr>
<tr>
<td>TTCD</td>
<td>tongue tip constrict degree</td>
</tr>
<tr>
<td>TBCL</td>
<td>tongue body constrict location</td>
</tr>
<tr>
<td>TBCD</td>
<td>tongue body constrict degree</td>
</tr>
<tr>
<td>VEL</td>
<td>velic aperture</td>
</tr>
<tr>
<td>GLO</td>
<td>glottal aperture</td>
</tr>
<tr>
<td>upper & lower lips, jaw</td>
<td></td>
</tr>
<tr>
<td>tongue tip, tongue body, jaw</td>
<td></td>
</tr>
<tr>
<td>tongue body, jaw</td>
<td></td>
</tr>
<tr>
<td>velum</td>
<td></td>
</tr>
<tr>
<td>glottis</td>
<td></td>
</tr>
<tr>
<td>tongue tip</td>
<td></td>
</tr>
<tr>
<td>jaw</td>
<td></td>
</tr>
<tr>
<td>tongue body center</td>
<td></td>
</tr>
<tr>
<td>velum</td>
<td></td>
</tr>
<tr>
<td>upper lip</td>
<td></td>
</tr>
<tr>
<td>lower lip</td>
<td></td>
</tr>
<tr>
<td>jaw</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday, September 2, 14
Tasks, articulators, redundancy, synergy

- Performance of any skilled motor task requires cooperation of several independently moveable body parts, which we call articulators.
 - e.g., reaching for an object on a table

- There is large (possibly infinite) set of articulator postures that will achieve the task. This is sometimes called redundancy.

- When we learn to perform a task, we learn a pattern of dependency among the articulators specific to the task. This is called a synergy or a coordinative structure.

- The synergy allows the task to be performed in different ways in different environmental contexts.

- Different actors learn to “tune” the synergy differently, resulting in different articulator movements for the same functional task.
Synergies in Speech

• Tasks in speech are gesture constrictions that form the consonants and vowels.

• Task that is in common to /p,b,m/ is the closure of the lips.

• What articulators are part of the synergy for a lip closure?
 • jaw
 • lower lip
 • upper lip

• Different people learn to tune the synergy differently: They employ different relative contributions of these articulators.

• Relative contributions differ when some perturbing event occur in the world.

• Relative contributions differ when the task is produced in the context of other tasks.
Individual Differences in Task Performance

• Locomotion

Can you identify persons by the sound their walking makes?

Task can be accomplished in different ways

• Speech

Same gesture (lip closure) can be accomplished by different combinations of jaw and lip displacements.

How do these contribute to our impression of different voices?
Speaker differences in Lip Closure synergies

“ship”

Speaker A

Speaker B

UL

LL

Jaw

LA

Time (ms)

Time (ms)
Speaker differences in Lip Closure synergies

“back”

Speaker A

Speaker B

Tuesday, September 2, 14
Compensation for perturbation

- **Compensation**
 When the task is threatened by a perturbation of one articulator (e.g., yanking on the speaker's jaw as (s)he is about to produce a lip closure), other articulators, remote from the site of the perturbation, act to meet the challenge (e.g., increased displacement of upper lip) (Kelso et al., 1983).

- **Speed**
 Compensatory action is extremely fast (20 ms or so). This implicates direct inter-articulator cooperation. There is not enough time for an executive to "manage" responses to perturbation.

- **Task-specificity**
 Response to perturbation is task-specific, not hard-wired. If the subject is producing /z/, instead of /b/, response is not seen.
Lip Task performance in different contexts

- The relative contribution of the articulators in the synergy may differ when the task is produced in different contexts in which one of the articulators may be required for some other task.

- For example, lip closure in “back” vs. “been”.

- Jaw is recruited to be low in “back” because of the low vowel /æ/ and high in “been” because of high vowel /I/.

- More lower lip lowering emerges in “back” than in “been”.

![Graph showing upper lip height over time for "back" and "been"]
Tongue Tip Task performance in different contexts

- In the context of different vowels, the tongue tip closure task for (/t,d,n/) is produced with a different combination of articulators: tongue body, tongue tip.

- This is sometimes called “coarticulation”
Speech as audible gesture

- Gestures are analogous to the use of "signs" in languages such as American Sign Language (ASL).

- In sign, gestures of the arms, hands, and fingers are communicated optically to the visual system of the receiver.

- In speech, gestures of the tongue, lips, and larynx are (largely) invisible, but are communicated acoustically to the auditory system of the receiver.

- For gestures that are potentially visible, optic and auditory information are combined into a single gestural percept.
Gestures and sound production

• Two functions of sound production need to be distinguished:
 • Sound generation
 • Sound shaping

• Sound generation: causing air to vibrate at audible frequencies
 • In the case of musical instruments, this is the function of lips against the mouthpiece in trumpet, or the air passing over the reed in a wind instrument.
 • Device generating sound is the sound source.
Sound sources in speech

- vibration of the larynx
- turbulent ("jet") noise of air rushing thru narrow slit
- "pop" when built-up pressure is released
Sound shaping

- Generated sound is shaped, or filtered, by passing it through tubes of various lengths.

- Tube lengths determines the spectrum of the sound, the relative strength of the frequencies or overtones that compose it.

- In trumpets or wind instruments, different shaping is accomplished by fingering.

- In most mammals, the length of vocal tube is used as information about an animals size.

- Filter functions in speech:
 - constrictions of different organs produce changes in the effective lengths of vocal tract tubes.
 - allowing air to pass through the nose or not.
Speech Gestures and sound

- Gestures of functionally distinct constricting organs can distinguish words:
 - **Larynx** (generates sound source)
 - **Velum** (shapes sound generated at larynx)
 - **oral constrictors**: (shapes sound generated at larynx)
 - lips
 - tongue tip
 - tongue body
Types of Gestures

laryngeal
- opening (voicelessness)
 - "pad", "Sue"
- narrowing (voicing)
 - "bad", "zoo"

velic
- opening (nasal)
 - "mad"
- closing (oral)
 - "bad"

oral

<table>
<thead>
<tr>
<th>Constricting Organs:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lips</td>
<td>Labial</td>
</tr>
<tr>
<td>Tongue Tip</td>
<td>Coronal</td>
</tr>
<tr>
<td>Tongue Body</td>
<td>Dorsal</td>
</tr>
<tr>
<td>Tongue Root</td>
<td>Radical</td>
</tr>
</tbody>
</table>
Laryngeal Gestures
Velic Gestures

“Jane may earn more money by working hard.”

Velic Open: NASAL

Velic Closed: ORAL

“Jane”

“hard”
Sound Source

- sentence from siSwat'i (Southern Bantu language; Swaziland)
- electroglottograph (EGG) signal recorded from subject’s larynx while sentence is being produced.

- Modulation in period of glottal wave carries intonation (pitch gestures)
Gesture Combinations

- English words can begin with combinations of Oral, Laryngeal and Velic constriction gestures.
- The resulting combinations are usually analyzed as consonants or consonant segments.
- From the gestures we illustrated, we can form 9 combinations (consonants) in English.

<table>
<thead>
<tr>
<th>VELIC</th>
<th>closed</th>
<th>closed</th>
<th>open</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARYNX</td>
<td>narrow</td>
<td>open</td>
<td>narrow</td>
</tr>
<tr>
<td>LIPS</td>
<td>“bought”</td>
<td>“pot”</td>
<td>“Mott”</td>
</tr>
<tr>
<td>TT</td>
<td>“dot”</td>
<td>“tot”</td>
<td>“not”</td>
</tr>
<tr>
<td>TB</td>
<td>“got”</td>
<td>“cot”</td>
<td>“pong”</td>
</tr>
</tbody>
</table>

- But there are more than 9 consonants in English. Where do the rest come from?
Differentiating oral constriction gestures

A given constrictor can produce several different distinctive gestures by varying:

- **Constriction Degrees** (how narrow is the constriction?)
 - stop ("dip, tip") complete obstruction of tube
 - fricative ("zip, sip") narrowing to create jet noise
 - approximant ("rip") narrowing with no source change

- **Constriction Locations** (exactly where is it?)
Multiple oral constrictions

“lie”
- **Tongue Tip**
 CD: stop
- **Tongue Body**
 CD: approximant, CL: uvular

"rye"
- **Lips**
 CD: approximant
- **Tongue Tip/Body**
 CD: approximant, CL: palatal
- **Tongue Root**
 CD: approximant
Traditional (IPA) description of consonants and gestural analysis

(1) Laryngeal gesture results:
 - voiced (<laryngeal narrowing)
 - voiceless (<laryngeal opening)

(2) Location of oral constriction gesture
 - bilabial, labiodental
 - dental, alveolar, palato-alveolar
 - palatal, velar, uvular, pharyngeal

(3) central or lateral

(4) Velic gesture results:
 - nasal (<velic opening)
 - oral (<velic closure)

(5) Degree of oral constriction gesture
 - stop
 - fricative
 - approximant
Example: consonant beginning "bad"

- Three gestures:
 - laryngeal narrowing
 - velic closure
 - Lips (CL: bilabial, CD: stop)

- Five-term description:
 1. voiced
 2. bilabial
 3. central
 4. oral
 5. stop
Vowel and consonant gestures

• How do vowel gestures differ from consonant gestures?

 (1) consonants are more constricted than vowels

 • exceptions?

 (2) vowel gestures are formed more slowly and "last longer" than consonant gestures
Types of vowel gestures

3 basic vowels that occur in almost all languages

“heed”
“hod”
“who’d”

CONSTRICION LOCATIONS
PALATAL
VELAR
PHARYNGEAL
English Vowels

<table>
<thead>
<tr>
<th>English Vowel</th>
<th>Graph</th>
<th>English Vowel</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>"heed"</td>
<td></td>
<td>"who'd"</td>
<td></td>
</tr>
<tr>
<td>"hid"</td>
<td></td>
<td>"hood"</td>
<td></td>
</tr>
<tr>
<td>"hayed"</td>
<td></td>
<td>"hoed"</td>
<td></td>
</tr>
<tr>
<td>"head"</td>
<td></td>
<td>"had"</td>
<td></td>
</tr>
</tbody>
</table>

Click on vowels to listen.
Fig. 1.4 The positions of the vocal tract in the author's pronunciation of the vowels in the words: (1) "heed", (2) "hid", (3) "head", (4) "had", (5) "hod", (6) "hawed", (7) "hood", and (8) "who'd".
Systems for describing vowels

Location and degree of dorsal constriction

• degrees: narrow mid wide (and intermediate)
• locations: palatal velar uvular pharyngeal

Tongue Position system

• high-low position of tongue body
• front-back position of tongue body
• round-unrounded

Formant (resonance) system

○ high-low value of F1 (related to tongue body height)
○ high-low value of F2 (related to tongue body front-back)