Gestural Scores and Phonetic Transcription
Coordination of gestures in time

• The consonant and vowel gestures that form a word are each active for a fixed interval in time.

• The multiple gestures associated with a given consonant or vowel may not be synchronous with each other.

• Relative timing of gestures carries information.

• What is the appropriate timing?

• How do we find out?
Finding Gestures in Time

• To find when gesture is active in time, examine the movements of the constricting device that forms the constriction for that gesture.

• When it begins to move towards the gesture’s constriction target, this is the moment of gestural activation.

• When it begins to move away the gesture’s constriction target, this is the moment of gestural deactivation.
Gesture Activation Times

“two back”
Principles underlying Gesture Timing

- Gestures for word-initial C and the V begin at the same time!
 - Initial C and V are co-produced

- The V gesture continues about two and a half times as long as the C gesture

- The gesture for the final C begins roughly when the V gesture ends.
Gestural Scores

• Representation of the temporal organization of gestures

• Time along horizontal dimension

• Boxes represent intervals of time during which gestures are active in the vocal tract.

• Gestures of oral constrictors, velum, glottis are displayed on different rows, e.g., “bad”:

• Labels on the boxes indicate the constriction degree (and location) of the gesture.

• Default Simplifications (gestures left out of displays): Glottal narrowing for voicing Velic closure for oral stops
Gestural Score for “bob”

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>G(LA)</th>
<th>G(VEL)</th>
<th>G(TBCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>-2</td>
<td>-0.1</td>
<td>11</td>
</tr>
<tr>
<td>50 - 200</td>
<td>11</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>200 - 350</td>
<td>-2</td>
<td>-0.1</td>
<td></td>
</tr>
</tbody>
</table>

Linguistics 285 (USC Linguistics)
Lecture 14: Speech Synthesis and Task Dynamics
March 4, 2014

```plaintext
%/b/
'LA' 0 0 9 0 -2 8 1 JA=8, UH=5, LH=1 100 0.01
'LA' 0 9 13 0 11 8 1 JA=8, UH=5, LH=1 1 1
'VEL' 0 0 9 0 -0.1 8 1 NA=1 0 0

%/aa/
'TBCD' 0 0 30 0 11 4 1 JA=1, CL=1, CA=1 1 1
'TBCD' 0 0 30 0 170 4 1 JA=1, CL=1, CA=1 1 1

%/b/
'LA' 0 25 34 0 -2 8 1 JA=8, UH=5, LH=1 100 0.01
'LA' 0 34 37 0 11 8 1 JA=8, UH=5, LH=1 1 1
'VEL' 0 25 34 0 -0.1 8 1 NA=1 0 0
```
Contrast among gestural scores

• Differences in gestural scores that can count as different words:
 • presence or absence of particular gestures
 • gestures' values of CD and CL
 • Can be abbreviated with “names” but are quantitative values (of target and stiffness of appropriate task variables)
 • organization of gestures in time
Presence or absence of gestures: compositionality

“bad”

“pad”

“ban”

“pan”

“Ann”

“tan”
Tongue Tip Tasks

for /t,d,n/
Articulators for TT Tasks

- And also Jaw Angle (JA), Tongue Center (CL, CA)
"beat"

%b/
'LA' 0 0 9 0 -2 8 1 JA=8, UH=5, LH=1 100 0.01
'LA' 0 9 13 0 11 8 1 JA=8, UH=5, LH=1 1 1
'VEL' 0 0 9 0 -0.1 8 1 NA=1 0 0

%/iy/
'TBCD' 0 0 30 0 4 4 1 JA=1, CL=1, CA=1 1 1
'TBCL' 0 0 30 0 95 4 1 JA=1, CL=1, CA=1 1 1

%/t/
'TTCD' 0 25 34 0 -2 8 1 JA=32, CL=32, CA=32, TL=1, TA=1 100 0.01
'TTCL' 0 25 34 0 56 8 1 JA=32, CL=32, CA=32, TL=1, TA=1 1 1
'TTCL' 0 34 39 0 24 8 1 JA=512, CL=512, CA=512, TL=1, TA=1 1 1
'TTCD' 0 34 39 0 11 8 1 JA=512, CL=512, CA=512, TL=1, TA=1 1 1
'VEL' 0 25 34 0 -0.1 8 1 NA=1 0 0
'GLO' 0 28 39 0 0.4 16 1 GW=1 0 0
Tasks for velar stops?

- TBCL = 1.10
- TBCD = -2

Closure

- TBCL = 1.10
- TBCD = 6

Release
Tasks for stop consonants

<table>
<thead>
<tr>
<th>Lip (Labial)</th>
<th>T Tip (Alveolar)</th>
<th>T Body (Velar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO</td>
<td>REL</td>
<td>CLO</td>
</tr>
<tr>
<td>LA=-2</td>
<td>LA=11</td>
<td>TTCL=56</td>
</tr>
<tr>
<td>b</td>
<td>VEL=-.1</td>
<td>d</td>
</tr>
<tr>
<td>p</td>
<td>VEL=-.1</td>
<td>t</td>
</tr>
<tr>
<td>m</td>
<td>VEL=.2</td>
<td>n</td>
</tr>
</tbody>
</table>
% /b/
% clo
'LA' ... -2 8 1 JA=8, UH=5, LH=1 100 0.01

% rel
% 'LA' ... 9 13 0 11 8 1 JA=8, UH=5, LH=1 1 1

% /d/
% clo
'TTCL' ... 56 8 1 JA=32, CL=32, CA=32, TL=1, TA=1 1 1
'TTCD' ... -2 8 1 JA=32, CL=32, CA=32, TL=1, TA=1 100 0.01

% rel
'TTCL' ... 24 8 1 JA=512, CL=512, CA=512, TL=1, TA=1 1 1
'TTCD' ... 11 8 1 JA=512, CL=512, CA=512, TL=1, TA=1 1 1

% /g/
% clo
'TBCL' ... 110 8 1 JA=10, CL=1, CA=1 10 0.1
'TBCD' ... -2 8 1 JA=100, CL=1, CA=1 100 0.01

% rel
'TBCD' ... 6 8 1 JA=10, CL=1, CA=1 1 1
Glottal and Velic gestures for stops and fricatives

% Velic closure for stops and fricatives
'VEL' ... -0.1 8 1 NA=1 0

% Velic opening for nasals
'VEL' ... 0.2 8 1 NA=1 1 1

% Glottal opening for voiceless stops and fricatives
'GLO' ... 0.3 16 1 GW=1 0
Gesture Combinations

- English words can begin with combinations of Oral, Laryngeal and Velic constriction gestures.
- The resulting combinations are usually analyzed as consonants or consonant segments.
- From the gestures we illustrated, we can form 9 combinations (consonants) in English.

<table>
<thead>
<tr>
<th>VELIC</th>
<th>closed</th>
<th>closed</th>
<th>open</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARYNX</td>
<td>narrow</td>
<td>open</td>
<td>narrow</td>
</tr>
<tr>
<td>LIPS</td>
<td>“bought”</td>
<td>“pot”</td>
<td>“Mott”</td>
</tr>
<tr>
<td>TT</td>
<td>“dot”</td>
<td>“tot”</td>
<td>“not”</td>
</tr>
<tr>
<td>TB</td>
<td>“got”</td>
<td>“cot”</td>
<td>“pong”</td>
</tr>
</tbody>
</table>

- But there are more than 9 consonants in English. Where do the rest come from?
Differentiating oral constriction gestures

A given constrictor can produce several different distinctive gestures by varying:

- **Constriction Degrees**
 (how narrow is the constriction?)
 - stop ("dip, tip")
 complete obstruction of tube generates “pop” sound source
 - fricative ("zip, sip")
 narrowing to create jet noise source
 - approximant ("rip")
 narrowing with no source change

- **Constriction Locations**
 (exactly where is it?)
Constriction Locations for TT fricatives

- Dental: “thick”
- Alveolar: “sick”
- Palatoalveolar: “Shick”
Fricatives: Oral Constriction Tasks

\[\theta \quad z \quad \int \]
Fricatives: Oral Constriction Tasks

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clo</td>
<td>rel</td>
<td>clo</td>
</tr>
<tr>
<td>TTCL=40</td>
<td>TTCL=24</td>
<td>TTCL=56</td>
<td>TTCL=24</td>
</tr>
<tr>
<td>TTCD=1.2</td>
<td>TTCD=11</td>
<td>TTCD=1.2</td>
<td>TTCD=11</td>
</tr>
<tr>
<td>TB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>clo</td>
</tr>
<tr>
<td>TTCL=110</td>
<td>TBCD=10</td>
<td>TBCL=95</td>
<td>TBCD=8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fricatives:
Oral Constriction Gestures

% /th/
% clo
'TTCL' ... 40 10 1 JA=32,CL=32,CA=32,TL=1,TA=1 1 1
'TTCD' ... 1.2 10 1 JA=32,CL=32,CA=32,TL=1,TA=1 10 0.1
% rel
'TTCL' ... 24 8 1 JA=512,CL=512,CA=512,TL=1,TA=1 1 1
'TTCD' ... 11 8 1 JA=512,CL=512,CA=512,TL=1,TA=1 1 1

% /s/
% clo
'TTCL' ... 56 10 1 JA=640,CL=32,CA=32,TL=1,TA=1 1 1
'TTCD' ... 1.2 10 1 JA=640,CL=32,CA=32,TL=1,TA=1 10 0.1
'TBCL' ... 110 8 1 JA=10,CL=1,CA=1 10 0.1
'TBCD' ... 10 8 1 JA=10,CL=1,CA=1 10 0.1
% rel
'TTCL' ... 24 8 1 JA=512,CL=512,CA=512,TL=1,TA=1 1 1
'TTCD' ... 11 8 1 JA=512,CL=512,CA=512,TL=1,TA=1 1 1

% /sh/
% clo
'TTCL' ... 60 10 1 JA=640,CL=32,CA=32,TL=1,TA=1 1 1
'TTCD' ... 1.2 10 1 JA=640,CL=32,CA=32,TL=1,TA=1 10 0.1
'TBCL' ... 95 8 1 JA=10,CL=1,CA=1 100 0.01
'TBCD' ... 8 8 1 JA=10,CL=1,CA=1 100 0.01
% rel
'TTCL' ... 40 8 1 JA=512,CL=512,CA=512,TL=1,TA=1 1 1
'TTCD' ... 11 8 1 JA=512,CL=512,CA=512,TL=1,TA=1 1 1
Fricatives: examples

\(\theta \quad s \quad \int \)
Glides: Oral Constriction Gestures

% /w/
%clo
'LA' ... 1 8 1 JA=8, UH=5, LH=1 1 1
'TBCL' ... 125 8 1 JA=10, CL=1, CA=1 10 0.1
'TBCD' ... 2 8 1 JA=10, CL=1, CA=1 100 0.01
%rel
'LA' ... 11 8 1 JA=8, UH=5, LH=1 1 1

% /j/
'TBCL' ... 95 8 1 JA=10, CL=1, CA=1 100 0.01
'TBCD' ... 2 8 1 JA=10, CL=1, CA=1 100 0.01
Multiple oral constrictions

“lie”
• Tongue Tip
 CD: stop
• Tongue Body
 CD: approximant, CL: uvular

"rye"
• Lips
 CD: approximant
• Tongue Tip/Body
 CD: approximant, CL: palatal
• Tongue Root
 CD: approximant
Consonant Phonemes & Gestures

<table>
<thead>
<tr>
<th>lips</th>
<th>tip</th>
<th>body</th>
<th>velum</th>
<th>glottis</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>bilabial stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>p</td>
<td>bilabial stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>m</td>
<td>bilabial stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>t</td>
<td>alveolar stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>d</td>
<td>alveolar stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>n</td>
<td>alveolar stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>k</td>
<td>velar stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>velar stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>η</td>
<td>velar stop</td>
<td></td>
<td></td>
<td>opening</td>
</tr>
<tr>
<td>s</td>
<td>alveolar fric (velar approx)</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>alveolar fric (velar approx)</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>alveolar stop (uvular approx)</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>opening</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contrast: organization in time

“bad”

“dab”
Cross-language timing differences: English vs. French

“two”
- Alveolar stop
- Bilabial approximant
- Yelar narrow
- Opening

“tous”
- Alveolar stop
- Bilabial approximant
- Yelar narrow
- Opening

“bun”
- Alveolar stop
- Bilabial narrow
- Uvular narrow
- Opening

“bonne”
- Alveolar stop
- Bilabial narrow
- Opening
Gestural Scores & Phonetic Transcription

• Gestural scores
 • how words differ from one another (contrast) in a given language
 • show how (similar) words in different languages are produced differently

• Phonetic transcription
 • intended to fulfill the same functions

• What is the relation?
Phonetic Transcription as Gestural Annotation

• Phonetic transcription can be viewed as a system (developed by phoneticians) for annotating the gestural score, using an string of alphabetic symbols.

• Humans can attend to (and become aware of) patterns of gesture in their own vocal tracts: which words are comprised of which gestures, in what rough organization.

 • This awareness must have been the basis for the invention of alphabetic writing systems, which represent gestural structures using strings of symbols.

• Analogy with chemistry
Transcription Types

• Broad Phonemic
 • Each phoneme is a symbol for a contrastive gesture or a set (combination) of gestures
 • The order of phonemes symbolizes contrastive aspects of gestural organization.
 • Two transcriptions that differ in at least one symbol or one ordering are potentially contrastive.

• Narrow Phonetic
 • Annotates non-contrastive details of gestural score
 • Two transcriptions that differ in at least one symbol represent utterances that may or may not contrast
Phonemic Transcription: Annotation Principles

1. Each distinctive oral constriction gesture is annotated by a distinct symbol.

 \[bæd \text{ vs } dæd \]

2. The ordering of symbols represents the order in which the corresponding gestures (or sets of gestures) reach their targets.
3. When a distinctive Laryngeal or Velic gesture overlaps an oral constriction gesture, a single symbol is used for the gestural combination.
Consonant Phonemes & Gestures

<table>
<thead>
<tr>
<th>lips</th>
<th>tip</th>
<th>body</th>
<th>velum</th>
<th>glottis</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>bilabial stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>bilabial stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>bilabial stop</td>
<td>opening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>alveolar stop</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>alveolar stop</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>alveolar stop</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>velar stop</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>velar stop</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>velar stop</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>alveolar fric</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>alveolar fric</td>
<td></td>
<td>opening</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>alveolar stop</td>
<td></td>
<td>uvular approx</td>
<td>opening</td>
</tr>
<tr>
<td>h</td>
<td>opening</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vowels

• A single symbol is used for distinctive combinations of tongue and lip gestures for vowels.
 • e.g., /but/

• Diphthongs have two symbols: one for each tongue gesture
 • e.g. /baɪt/
Narrow Transcription

• Annotation of details of the gestural score

• Alphabetic symbols between square brackets e.g., [bæn]

• Two transcriptions that differ in at least one symbol represent utterances that may or may not contrast

• English:
 • [tɛn] in "ten times"
 • [tɛŋ] in “ten things”
Language-specific details of gestural score

“two”

“tous”

“bun”

“bonne”
Types of Details

1. temporal overlap between gestures
 - aspiration of initial stops in English
 - nasalization of vowels in English before nasals.

2. constriction properties
 - degree:
 * **flapping** in American English: Coronal stops and the laryngeal opening gestures "shrink" between stressed and unstressed vowels, and become approximants or “flaps”. "latest" [leɪɪʃɪst]
 - location:
 * **place assimilation** in American English: Final nasals may be assimilated to the place of a following stop. "miss you" [mɪʃju]
Aspiration of initial voiceless stops
Nasalization of vowels before nasals
Flapping

“Tim takes”

“latest”

[tʰɪm]

[tʰeɪks]

[leɪɪst]
Place Assimilation

• Contextual variation in narrow transcription of the same word:
 • “miss it” [mɪs]
 • “miss you” [mɪʃ]

• Example
 • “I’m sure I’m gonna miss you”

 slow fast

• What is going on here?
 • We change alveolar fricative to palatoalveolar before [j]?
 • Gestures overlap in time?
Change in Gestural overlap: Synthesis

SLOW
- VELUM: WIDE
- LIPS: STOP
- TT: ALV FR
- TB: PALATAL NAR, PAL NAR, VELAR NAR
- GLOTTIS: WIDE

FAST
- VELUM: WIDE
- LIPS: STOP
- TT: ALV FR
- TB: PALATAL NAR, PAL NAR, VELAR NAR
- GLOTTIS: WIDE
Due to change of speaking style, the degree of overlap between the gestures is altered.
Place Assimilation: nasal

• Final /n/ is sometimes assimilated to the place of a following labial or dorsal stop:

• “can be”
 [kændbi] slow vs. [kæmbi] fast
Nasal Assimilation: Synthesis

“can be” SLOW

VELUM
- WIDE
LIPS
- LAB STOP
TT
- ALV ST
TB
- VEL WIDE, PAL NAR
GLOTTIS
- WIDE

“can be” FAST

VELUM
- WIDE
LIPS
- LAB STOP
TT
- ALV ST
TB
- VEL WIDE, PAL NAR
GLOTTIS
- WIDE

“can be” SLOW

“can be” FAST

Nasal Assimilation: Synthesis
Nasal Assimilation to a following coronal

- “ten times” [tẽn] vs “ten things” [tẽŋ]
- overlap of alveolar nasal and dental fricative results in blending of the two TT gestures
The difficulty we have in perceiving this is probably due to the fact that we perceive the underlying contrastive gestural units, not their context-dependent consequences.

Overlap of two gestures that attempt to control the same constrictor causes blending of the two gestures.

\[\text{ten times} \text{ vs. ten themes} \]
MRI evidence for blending

“shorten this” [ŋ] [ð]

“open every” [n]