Dynamic Programming is an alternative search strategy that is faster than Exhaustive search, slower than Greedy search, but gives the optimal solution.

View a problem as consisting of subproblems:
 - Aim: Solve main problem
 - To achieve that aim, you need to solve some subproblems
 - To achieve the solution to these subproblems, you need to solve a set of subsubproblems
 - And so on...

Dynamic Programming works when the subproblems have similar forms, and when the tiniest subproblems have very easy solutions.
Main Problem: Shortest path from A to J: V_{AJ}

DP Thinking: Let’s say I know the best paths from B to J and C to J: V_{BJ} and V_{CJ}. Then we would add V_{BJ} to the cost from A to B, V_{CJ} to the cost from A to C, compare the two, and pick the least.

So we now have 2 subproblems V_{BJ} and V_{CJ}. If we could solve those subproblems, we could solve the main problem V_{AJ}.

But now we can think of V_{BJ} as its own problem, and then repeat the thinking: If I knew the solutions to V_{DJ}, V_{EJ}, and V_{FJ}, then we can solve V_{BJ}. Same with V_{CJ}.

Continue thinking in this way till we get to: V_{GJ}, V_{HJ}, V_{IJ}, which are easy to solve!
\[V_{A.J} = \min \left\{ 12 + V_{B.J}, 7 + V_{C.J} \right\} \]

\[V_{B.J} = \min \left\{ 5 + V_{D.J}, 6 + V_{E.J}, 9 + V_{F.J} \right\} \]

\[V_{C.J} = \min \left\{ 14 + V_{D.J}, 10 + V_{E.J}, 11 + V_{F.J} \right\} \]

\[V_{D.J} = \min \left\{ 8 + V_{G.J}, 7 + V_{H.J}, 10 + V_{I.J} \right\} \]

\[V_{E.J} = \min \left\{ 9 + V_{G.J}, 7 + V_{H.J}, 9 + V_{I.J} \right\} \]

\[V_{F.J} = \min \left\{ 10 + V_{G.J}, 7 + V_{H.J}, 8 + V_{I.J} \right\} \]

\[V_{G.J} = 5 \]

\[V_{H.J} = 9 \]

\[V_{I.J} = 8 \]
Dynamic Programming solution in Matlab

\[V_{GJ} = 5 \]

\[V_{DJ} = \min \{ 8 + V_{GJ}, 7 + V_{HJ}, 10 + V_{IJ} \} \]

\[V_{EJ} = \min \{ 9 + V_{GJ}, 7 + V_{HJ}, 9 + V_{IJ} \} \]

\[V_{IJ} = 8 \]

\[V_{FJ} = \min \{ 10 + V_{GJ}, 7 + V_{HJ}, 8 + V_{IJ} \} \]

\[V_{BJ} = \min \{ 5 + V_{DJ}, 6 + V_{EJ}, 9 + V_{FJ} \} \]

\[V_{CJ} = \min \{ 14 + V_{DJ}, 10 + V_{EJ}, 11 + V_{FJ} \} \]

\[V_{AJ} = \min \{ 12 + V_{BJ}, 7 + V_{CJ} \} \]
Dynamic Programming notation: distances

- cost (or distance) of going from stage 1, state 1 to stage 2, state 1
 - \(d(1, 1, 2, 1) \)
- cost (or distance) of going from stage 1, state 1 to stage 2, state 2
 - \(d(1, 1, 2, 2) \)
- cost (or distance) of going from stage 2, state 1 to stage 3, state 2
 - \(d(2, 1, 3, 2) \)
- cost (or distance) of going from stage \(k \), state \(i \) to stage \(k+1 \), state \(j \)
 - \(d(k, i, k+1, j) \)
Dynamic Programming notation: Minimum cost from a node to the end

- minimum cost of going from stage 4, state 1 to end
 \[V(4, 1) \]
- minimum cost of going from stage 3, state 2 to end
 \[V(3, 2) \]

Evaluating:

- \[V(4, 1) = 5 \]
- \[V(3, 2) = \min \left\{ \begin{array}{l}
d(3, 2, 4, 1) + V(4, 1) \\
d(3, 2, 4, 2) + V(4, 2) \\
d(3, 2, 4, 3) + V(4, 3) \\
\end{array} \right\} \]

Generalizing:

- \[V(k, i) = \min_j (d(k, i, k + 1, j) + V(k + 1, j)) \]
Matlab code for DP: Defining the network

costs(1,1,2,1) = 12;
costs(1,1,2,2) = 7;
costs(2,1,3,1) = 5;
costs(2,1,3,2) = 6;
costs(2,1,3,3) = 9;
costs(2,2,3,1) = 14;
costs(2,2,3,2) = 10;
costs(2,2,3,3) = 11;
costs(3,1,4,1) = 8;
costs(3,1,4,2) = 7;
costs(3,1,4,3) = 10;
costs(3,2,4,1) = 9;
costs(3,2,4,2) = 7;
costs(3,2,4,3) = 9;
costs(3,3,4,1) = 10;
costs(3,3,4,2) = 7;
costs(3,3,4,3) = 8;
costs(4,1,5,1) = 5;
costs(4,2,5,1) = 9;
costs(4,3,5,1) = 8;
num_states = [1 2 3 3 1];
Using this generalized form, we can write a Matlab program, using nested loops, that will start at the end and compute $V(k, i)$ for every node recursively.

The last one we compute will be $V(1, 1)$ which is the length of the minimum path from beginning to end.

d = costs;
V(5,1)=0;
for k=4:-1:1
 for i=1:num_states(k)
 for j = 1:num_states(k+1)
 path_length(j)= d(k,i,k+1,j)+V(k+1,j);
 end
 V(k,i)=min(path_length);
 clear path_length
 end
end
V(1,1)
Why is this incomplete?
We know the minimum length path, but we don’t know which states it passes through.
Now start at the beginning. Add the cost of going from stage k to each of the nodes at stage $k+1$.
Find which total is minimal and choose the corresponding state in stage $k+1$.

```matlab
path = 0;
index = 1;
for k=1:4
    for j=1:num_states(k+1)
        path_length(j) = d(k,index,k+1,j)+V(k+1,j);
    end
    [minval, index] = min(path_length);
    path(k) = index;
    clear path_length
end
path
```