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ABSTRACT
Arousal and valence have been widely used to represent emo-
tions dimensionally and measure them continuously in time.
In this paper, we introduce a computational framework for
tracking these affective dimensions from multimodal data as
an entry to the Multimodal Affect Recognition Sub-Challenge
of the 2016 Audio/Visual Emotion Challenge and Workshop
(AVEC2016). We propose a linear dynamical system ap-
proach with a late fusion method that accounts for the dy-
namics of the affective state evolution (i.e., arousal or va-
lence). To this end, single-modality predictions are modeled
as observations in a Kalman filter formulation in order to
continuously track each affective dimension. Leveraging the
inter-correlations between arousal and valence, we use the
predicted arousal as an additional feature to improve valence
predictions. Furthermore, we propose a conditional frame-
work to select Kalman filters of different modalities while
tracking. This framework employs voicing probability and
facial posture cues to detect the absence or presence of each
input modality. Our multimodal fusion results on the de-
velopment and the test set provide a statistically significant
improvement over the baseline system from AVEC2016. The
proposed approach can be potentially extended to other mul-
timodal tasks with inter-correlated behavioral dimensions.

Keywords
Multimodal affective computing, arousal, valence, linear dy-
namical systems, Kalman filters

1. INTRODUCTION
Developing computational models for automatic emotion

recognition and affect sensing has been an active field of
research over the past few years. Researchers are increas-
ingly using the arousal-valence (A-V) scale for a continuous
and dimensional representation of emotional quality [1, 2].
This is especially true when one is interested in its dynamic
evolution. Continuous tracking of a person’s affective state
on the A-V scale during the course of dyadic interactions
and natural conversations has been investigated with some
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success. The Audio/Visual Emotion Challenge and Work-
shop (AVEC, [3]) has offered such opportunites and previ-
ous AVEC workshops have led to several investigations and
novel outcomes in the field of affective computing (e.g., [4,
5]).

The AVEC 2016 challenge uses the REmote COLlabora-
tive and Affective interactions (RECOLA [6]) dataset for
the Multimodal Affect Recognition Sub-Challenge (MASC).
The RECOLA dataset consists of synchronized and contin-
uous data from multiple modalities recorded during dyadic
interactions in French on a video conference that requires
completion of a collaborative task. In this paper, we present
a continuous affective state tracking system based on linear
dynamical models with Kalman filters [7]. Our approach is
inspired from the fact that arousal and valence are latent
affective dimensions, thus making online state tracking sys-
tems such as Kalman filters a suitable choice. We modify
the Kalman filtering scheme to incorporate the multimodal
nature of this problem by accounting for the presence or
absence of input modalities.

Contributions to affective computing research may be clas-
sified into two categories: feature extraction and model de-
velopment. Within the scope of AVEC challenges, several
studies have made contributions to both these fields. For
instance, the work in [8] proposed new audio-visual fea-
tures to capture speech spectrum characteristics and facial
landmarks to track affect. Novel modeling schemes using
template based methods and ensemble canonical correlation
analysis were proposed in [9] and [10] respectively. Other
novel methods proposed in previous AVEC challenges in-
clude the use of multi-scale temporal modeling [11], log-
gabor filters [12] and recurrent neural networks [13]. In most
of the aforementioned studies, performance of arousal pre-
diction is better than that of valence. There is also strong
theoretical and experimental evidence reporting that affect
dimensions are inter-correlated (e.g., [14]). Leveraging this
aspect, a fusion framework was proposed in [14] by modeling
the state correlations and covariances. Following this lead,
we use the predicted arousal as an additional noisy observa-
tion to improve the performance of tracking valence. Previ-
ous studies (e.g., [4]) have shown that acoustic features are
most predictive of arousal and video features more predic-
tive for valence. Additionally, while performing annotation
of natural dyadic conversations, human annotators may not
always be able to observe the subjects’ faces or voices to
make reliable judgements of arousal and valence. Motivated
by these factors, we propose a knowledge-based conditional
framework in which a specific filter is being selected among
different multimodal Kalman filters while performing online
tracking.

In summary, the contributions of this paper are two-fold:
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1) We employ linear dynamical systems to model unimodal
predictions from trained regressors to initially predict arousal
and then use the predicted arousal as an additional observa-
tion for valence prediction in an online fashion using Kalman
filters.
2) We propose a conditional framework to select from dif-
ferent multimodal Kalman filters while performing online
tracking based on cues that incorporate observability of audio-
visual data. The proposed approach could be adopted for
general behavioral coding where different behavioral codes
are inter-correlated.

2. BACKGROUND
Affect tracking typically comprises two systems: feature

extraction, which provides a low-level representation of the
audio, visual and/or physiological recordings; and modeling
approaches that translate the low-level descriptors into high-
level affect-related information. Audio features, typically re-
ferred to as acoustic low-level descriptors (LLD), include a
wide range of features that cover spectral, cepstral, prosodic
and voice quality information. Several studies have shown
the utility of LLD for A-V prediction, especially for arousal.
In videos, the goal is to extract features that can capture
the change and intensity of facial expressions over the du-
ration of a task. These video features can be classified into
appearance and geometry based. A few popular examples
of the appearance-based features include multiscale local-
binary patterns (LBP) and histogram of gradients (HOG)
modeled using bag of words (BOW). A variant of LBP fea-
tures, examined in spatio-temporal volumes of the video af-
ter convolving with 2D Gabor filter-banks, (LGBP-TOP)
[15], has been recently used for automatic facial expression
recognition [15] as well as affect tracking from video (e.g., [3,
4]). Video geometric features include identifying landmarks
on the face as well as the shoulders (e.g., [14]) or the whole
body (as with Motion Capture, [16]). These landmarks are
then tracked to acquire low-level descriptors of the dynamics
of facial or body gestures.

Physiological recordings of electro-cardiogram (ECG) and
electro-dermal activity (EDA) have been used extensively
to measure arousal, valence and categorical affect, among
other mental states [17]. At rest, these signals are tonic in
nature and thus phasic changes are used to measure more
immediate stimuli responses. Slowly evolving changes to
the tonic frequency for both ECG and EDA signals have
been correlated with higher levels of arousal. Heart rate
(HR; tonic) and heart rate variability (HRV; phasic) ex-
tracted from the ECG signal are typically used to quantify
physiologic changes in the autonomic nervous system. Skin
conductance level (SCL; tonic) and measures of skin con-
ductance response (SCR; phasic) provide a complementary
view.

Affect tracking is usually performed with human-annotated
arousal and valence for ‘gold standard’ ratings. Modeling
approaches here are generally supervised and can be broadly
classified into three distinct categories: regression-based meth-
ods; continuous-time, discrete-state models; and continuous-
time, continuous-state models. Support vector machines for
regression (SVR, [18]) is perhaps the most widely used re-
gression method for A-V prediction. The work in [19] was
among the first to propose SVR for A-V recognition where
audio-visual features were used to estimate continuous val-
ued ‘emotion primitives’ which were then mapped to dis-
crete emotions. Several studies (e.g., [20, 21]) have shown
reliable affect tracking from a single modality such as music
as well as multimodal data [4, 3]. Although such regres-

sion approaches predict affective dimensions on a continu-
ous scale, they do not account for the dynamical evolution
of these dimensions. In contrast, discrete and continuous
state modeling methods are desired in order to account for
state dynamics.

Discrete-state methods first quantize the continuous af-
fect dimensions into discrete levels to discriminate between
coarse categories such as active-passive [22], negative-positive
[23] or multiple levels (e.g., four to seven levels as in [24]).
Some commonly used approaches for modeling the relation
between the features and the discretized levels are hidden
Markov models (HMM, [23]) and conditional random fields
[24]. Although many of these approaches post-process the
predicted discrete levels to a continuous space, the inherent
property of quantization results in information loss. In this
context, continuous-state models are perhaps best suited for
continuously tracking affect dimensions.

Recently, continuous-state methods coupled with regres-
sion approaches have shown promising results in affect track-
ing. Long short-term memory (LSTM, [25]) recurrent neural
networks and Gaussian mixture models [26] were shown to
perform superior to SVR methods in [27]. Another study
[14], employed a bidirectional LSTM model in conjunction
with an output-associative framework to achieve improved
performance in affect prediction. Following this trend, a
deep bidirectional LSTM was proposed in [5] which was the
winner of the 2015 AVEC challenge. A somewhat less ex-
plored continuous-state approach for affect tracking is by
using Kalman Filters [7]. Good performance for predicting
arousal and valence by modeling acoustic features from mu-
sic using Kalman filters was demonstrated in [28]. Given a
small number of observations, only a few parameters need
to be estimated for Kalman filters. They have the addi-
tional benefit of performing online tracking by propagating
the predicted means and covariances of the state in time. In
the proposed approach we use a combination of SVRs and
Kalman filters to perform affect tracking. Due to the high
dimensional nature of the multimodal features, we first em-
ploy SVR to acquire arousal and valence separately for each
modality similar to the baseline paper [3]. The resulting
predictions from individual modalities are treated as noisy
observations of the underlying state which is assumed to be
known during late fusion. To the best of our knowledge,
no previous work has used Kalman filters for late fusion of
unimodal predictions to perform online tracking of arousal
and valence.

3. METHODS
We briefly introduce the corpus used for Multimodal Af-

fect Recognition Sub-Challenge (MASC) of AVEC 2016, the
baseline features provided as part of the challenge, and the
additional features we use in our proposed approach. The
unimodal predictions acquired are modeled as noisy obser-
vations in a linear dynamical system to track the underlying
state of arousal and valence using Kalman filters. We then
propose a conditional framework that selects different fil-
ters according to available modalities over the duration of
the task. Detailed performance evaluation is conducted to
assess our proposed approach.

3.1 Unimodal Predictions

3.1.1 Baseline Corpus and features
As previously described, we use the RECOLA database

[6] as part of the MASC challenge in AVEC 2016 in all our
experiments. The multimodal data in RECOLA include au-

60



Figure 1: Overview of the proposed system

dio, video, ECG and EDA recordings. Time-continuous rat-
ings were obtained for arousal and valence at 25fps. The
inter-rater reliability measured by intraclass correlation co-
efficient ([3]) is high (ICC>0.8) for both arousal and valence
indicating reliable gold standard ratings. Furthermore, the
audio-visual recordings were of high quality with little back-
ground clutter in the video and clear speech. Data from
nine distinct subjects was provided for each of training, de-
velopment and testing. The subjects were gender balanced
within and across groups.

To avoid repetition, we refer to [3] for details on the fea-
ture extraction procedures for all features provided as part of
the MASC. Briefly, the audio features include a minimalistic
set of acoustic LLD as per recommendations in [29]. Video
appearance features included LGBP-TOP [15] features re-
duced by applying principal component analysis. Video ge-
ometric features involve aligning forty-nine landmarks to a
mean-shape and tracking them for the duration of the video.
Physiological features are extracted from EDA signals (SCL
and SCR) and ECG signals (HR and HRV).

3.1.2 Additional Features
We supplement the baseline features with other features

described below. Among these features, face status and
voicing probability are used in the subsequent conditional
framework.

Face Status Pv: As demonstrated in [30], LBP and other
pixel-based appearance features suffer when the face pose is
not frontal due to alignment errors. To quantify this aspect
of observability of the subject’s face, we use the face detec-
tion status from the dlib library [31] as a binary feature.
This error measure can robustly quantify the observability
since the face detection is conservative and fails when the
face is approximately non-frontal (e.g., bending down, pro-
file faces, etc).

Voicing Probability Pa: In this work, we use voicing
probability as a cue to determine whether audio features
are reliable. Several studies have used voicing probability for
emotion recognition to extract speech features from voiced
regions [32]. It has also been used directly for several emo-
tion classification or clustering problems (e.g., [33, 34]). To
extract voicing probability, we use the algorithm introduced
in [35] implemented in the Kaldi toolkit [36]. It relies on a
pitch tracking method that computes the probability of the
frame being voiced. This method involves post-processing
of the normalized cross-correlation function (NCCF) of the
speech signal. Voicing probability along with face status are
used as cues to select different Kalman filters in the condi-
tional framework proposed in section 2.2.3.

Sparse dictionary representation of EDA (SD-EDA):
Prior literature has shown the effectiveness of using EDA
measures to predict valence and arousal (e.g., [37]). The
baseline EDA feature set provides statistical moments of the
noise-reduced signal every 40ms which does not directly cap-
ture SCRs. In our approach, artifacts are removed by fitting
the original signal into a predetermined EDA-specific shape
through sparse representation techniques [38]. SCR detec-
tion is performed with the Ledalab software [39]. The final
EDA measures include the mean SCL, number of SCRs and
mean SCR amplitude over non-overlapping 5sec windows.
These measures of SCR are commonly used in analyzing
EDA data and have been related to high arousal [40]. We
use a 0.02µS minimum SCR amplitude threshold to remove
noisy SCR shape matches. The data is inflated using linear
interpolation to produce a time series at the same temporal
resolution as the baseline data.

Teager energy-based MFCC (TEMFCC): The pre-
vious study in [41] demonstrated TEMFCC features to be
more robust than MFCC for classification of discrete emo-
tion categories, particularly in a noisy environment. TEM-
FCC features are computed by applying the non-linear Tea-
ger energy operator Ψ ([42]; equation 1) to the magnitude of
the discrete Fourier transform in the process of computing
MFCC.

Ψ(s[n]) = s[n]2 − s[n− 1]s[n+ 1] (1)

3.1.3 Unimodal predictions
Separate arousal and valence predictions are obtained from

individual modalities as described in the AVEC2016 paper
[3] and the scripts provided as part of the MASC challenge.
The regression task is performed using linear SVR provided
with the liblinear library available in WEKA [43]. Data
from the nine subjects in the development set is used to test
the performance as well tune for different parameters after
fitting the SVR models on the training set (see [3] for de-
tails). Unimodal predictions are first obtained from the eight
feature-sets provided as part of the MASC baseline (audio,
video-appearance, video-geometric, EDA, SCL, SCR, ECG,
HRHRV). We conducted additional experiments by adding
TEMFCC features to the baseline audio (audio+TEMFCC)
and adding SD-EDA features as described earlier. The best
delay parameter for augmented audio features is the same
as that for baseline features (2.8s). However, the best delay
parameter for the SD-EDA features is zero seconds. The
resulting predictions are post-processed to correct for bias
and scaling issues as described in [3]. These unimodal pre-
dictions are used as observations in the proposed late fusion
approach using linear dynamical systems.

3.2 Linear Dynamical System with Late Fu-
sion

As described earlier, Kalman filters are ideally suited for
continuous state tracking. We first present linear dynamical
system formulation for tracking arousal and valence using
the unimodal predictions. The state-space system param-
eters we use here are estimated using maximum likelihood
and expectation maximization (EM) algorithms.

Linear dynamical systems can be described by a state
equation and an observation equation as follows:

xt+1 = Axt + wt (2)

yt = Cxt + vt (3)

Here, we assume the gold standard ratings to be the contin-
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uous state, {x}T1 = (x1, x2, ..., xT ). The predictions from
different input modalities are treated as noisy observations
or measurements, {y}T1 = (y1, y2, ..., yT ) of the underlying
state with discrete time indexed by t with total number of
time points, T . The state noise wt, and observation noise vt,
are zero-mean and normally distributed random variables
with output noise covariance Q and state noise covariance R
respectively. A is the state dynamics matrix which controls
the state-evolution in time and C, the observation matrix
which relates the observations to the state. The evolution
of the state and its relation to the observations are assumed
to be linear time-invariant.

3.2.1 Estimation of state equation parameters
We assume the gold standard ratings to be the latent

state which is completely known in the training set. Ad-
ditionally, since the state dynamics noise is assumed to be
a zero-mean Gaussian random variable, we use maximum
likelihood (ML) estimation to estimate the state dynamics
matrix, A and the state noise covariance R of the autore-
gressive process in equation 2. The likelihood function of
the ML estimate for A can be written as

L({x}T2 ;A,R) =

K exp
(1

2

T−1∑
t=1

(xt+1 −Axt)>R−1(xt+1 −Axt)
) (4)

where K = 1

(2π)(T−1)/2|R|(T−1)

For a given |R| > 0, maximizing L is equivalent to min-
imizing the squared error, E which is also the least-squares
estimate of A;

E =

T−1∑
t=1

((xt+1 −Axt)>(xt+1 −Axt)) (5)

Following this, the state noise covariance is estimated with

the covariance of the residuals from the ML estimate, ÂML.

R ≈ 1

T − 1

T−1∑
t=1

((xt+1 − ÂMLxt)
>(xt+1 − ÂMLxt)) (6)

In all our experiments, the state parameters are estimated
for arousal and valence separately on the training set.

3.2.2 Estimation of observation equation parameters
The observations or measurements in our context are the

unimodal predictions acquired as described in section 2.1.3.
While the state to be tracked is a one-dimensional quantity,
the observations are multidimensional. Lacking a physical
model to describe the observation equation, a simple method
to estimate the observation matrix C and observation noise
covariance Q is to use ML estimation. Without additional
constraints, this is equivalent to the least-squares estima-
tion or the Moore-Penrose pesudoinverse which in this con-
text would be an ill-posed problem since dim(y) > dim(x).
Previous work, [28] has employed a convex optimization ap-
proach in order to achieve stable estimates for the system
parameters.

In this work we use the EM algorithm for linear dynamical
system presented by Shumway and Stoffer [44] to estimate C
and Q. We use a simple modification to the approach in [44]
by assuming C to be unknown as implemented in Python1.
A summary of the expectation (E-step) and maximization
(M-step) steps are given below where EM aims to iteratively

1https://pykalman.github.io/

Table 1: Summary of Kalman filter equations

State prediction x̂t+1|t = Ax̂t|t

Covariance prediction Pt+1|t = APt|tA
> +R

Innovation
(measurement error) ŷt+1 = yt+1 − Cx̂t+1|t

Innovation covariance St+1 = CPt+1|tC
> +Q

Kalman gain Kt+1 = Pt+1|tC
>S−1

t+1

State update x̂t+1|t+1 = x̂t+1|t +Kt+1 ˆyt+1

Covariance update Pt+1|t+1 = (I−Kt+1C)Pt+1|t

find θ = {(C,Q)|maxθ P ({y}T1 ; Θ)}.
We define the log likelihood function L as:

L({x}T1 , θ) = logP ({y}T1 , {x}T1 ; θ) (7)

and compute the expected log likelihood at iteration i:
E-step:

Θi = E{x}T1 [L({x}T1 , θ)|{y}T1 , θi] (8)

M-step:

θi+1 = arg max
θ

(Θi) (9)

The parameters, C and Q are re-estimated by solving the
partial derivative of Θi with respect to C and Q−1 respec-
tively, after setting to zero. Detailed derivation of the EM
steps can be found in [45]. Skipping intermediate steps, the
final update equations are below:

Cnew =
( T∑
t=1

ytE[xt|{y}T1 ]>
)( T∑

t=1

E[xtx
>
t |{y}T1 ]

)−1

(10)

Qnew =
1

T

T∑
t=1

(yty
>
t − CnewE[xt|{y}T1 ]y>t ) (11)

In all our experiments the parameters C andQ are estimated
over the entire training partition of the development set.

3.2.3 Kalman filters for conditional online tracking
Before describing the conditional aspect of our framework,

we first present the Kalman filter equations we use in our
approach. Note that because xt|· is a Gaussian random vari-
able, it is sufficient to only keep track of the conditional
means and covariances denoted as follows:

x̂t|t′ = E[xt|y0: t′ ] (12)

Pt|t′ = E[(xt − x̂t|t′)(xt − x̂t|t′)>|y0: t′ ] (13)

The conditional mean and covariance are initialized to zero
and one respectively. The measurement update and time
update equations involved in the forward Kalman filter re-
cursions [7, 45] are summarized in Table 1.

From the unimodal predictions acquired from the train-
ing set, we perform experiments on the development set in
a leave-one-subject-out fashion. So, for each subject in the
development set, we use the remaining eight subjects’ data
to estimate the state parameters A and R with ML esti-
mation and the observation parameters C and Q using EM.
We then perform online filtering on the left-out subject’s uni-
modal predictions. Since our linear dynamical system model
uses zero-mean Gaussian random variables, it is important
to compute the bias terms of the state and observation equa-
tions. For each subject tested, we compute the measurement
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Figure 2: Conditional framework for Choosing
Kalman Filters (KF)

bias ȳ as the average of each measurement vector from the
training partition. Similarly, the state bias x̄ is the average
of the known state. Given a test subject’s data, we first
remove the pre-computed measurement bias. Subsequent to
Kalman filtering, the state bias is added to the predicted
state.

Qualitative observations on the AVEC 2016 data show rel-
ative decrements in arousal whenever the primary speaker
(subject) remains silent. Similar decrements in valence are
observed when the subject’s face is not clearly observable.
Additionally, it is reasonable to assume that video features
and therefore the unimodal predictions are unreliable when
the subject’s face is not entirely frontal. As described pre-
viously, we use voicing probability to quantify the primary
speaker’s voice activation and a binary feature, face status
to quantify the observability of the subject’s face.

As with the unimodal predictions, arousal and valence
are best predicted with audio and video features respec-
tively. Hence, for late fusion we select either audio, video,
audio and video, or physiological predictions using voicing
probability and face-status as cues. We design four different
Kalman filters: audio only ( KF a; dim(ya) = 1), video only
( KF v; dim(yv) = 2), audio and video ( KF av; dim(yav) =
3) and physio only ( KF p; dim(yp) = 5). Parameters for
each of the filters are estimated in a leave-one-subject-out
fashion as described before. Different filters are designed for
arousal and valence, denoted as, KF ∗aro and KF ∗val where ∗

refers to the variable modality. Since we use Kalman fil-
ters to perform online tracking, it ensures that the predicted
state means and covariances are propagated in time thereby
preserving the dynamic evolution of the state being tracked.

We use a conditional logic framework to select from the
four filters while performing frame-wise online tracking. At
each frame, if the face is observable (face status = 1) and the
subject is speaking (voicing probability> 0.9), we useKF av,
else if only the face is observable or subject is speaking, we
use KF v or KF a accordingly, else use KF p. For valence
tracking, as mentioned earlier, we use the predicted arousal
as an additional observation. The overall algorithm for the
proposed approach is given in Algorithm 1. The thresh-
old for voicing probability is determined to be 0.9 using grid
search on the development set by varying the probability
values from 0.6 to 1.0 in steps of 0.05. The appropriate bias
term x̄ is added back to the arousal and valence estimates ac-
quired by tracking. Additional experiments are conducted
without the conditional framework to evaluate the perfor-
mance of the system.

Algorithm 1: Conditional Online Tracking

Input: Unimodal arousal/valence predictions of time
duration, T ; {y∗aro}T1 and {y∗val}T1 with
corresponding KF ∗aro or KF ∗val

Output: Tracked arousal and valence; {x̂aro}T1 and
{x̂val}T1

Parameters: Vocing probability, P a and face
status, P v and frame, t

x̂1,aro = 0; x̂1,val = 0; t = 2
while (t ≤ T ) do

Choose KF ∗aro and KF ∗val according to Figure 2
x̂t,aro ← KF ∗aro(x̂t−1,aro, y

∗
aro)

y
′∗
t,val ← {y∗t,val, x̂t,aro}
x̂t,val ← KF ∗val(x̂t−1,val, y

′∗
t,val)

t = t+1
end

3.3 Experiments and Performance Evaluation
We first perform unimodal predictions on arousal and va-

lence separately using the methods described in sections
2.1.1–2.1.3. In our preliminary experiments, unimodal per-
formance with audio+TEMFCC and SD-EDA is slightly
better (not statistically significant) than the baseline audio
and SCL/ SCR/ EDA features respectively. Taking this into
account, we only retain predictions from audio+TEMFCC,
video-appearance, video-geometric, ECG, HRHRV and SD-
EDA. These predictions are grouped into the three audio,
video and physiological modalities in our subsequent fusion
framework.

The main contribution of this paper is late fusion with
variable multimodal online Kalman filters based on a condi-
tional framework. To evaluate this system we perform the
following experiments:

• System 1: Track arousal and valence separately using
all modalities with no conditional framework.

• System 2: Track arousal first and use the predicted
arousal to track valence using all modalities with no
conditional framework.

• System 3: Track arousal first and use the predicted
arousal to track valence with the conditional frame-
work proposed in Algorithm 1

Systems 1-3 are tested on the development set in a leave-one-
subject-out fashion. In addition to estimating the state bias
term from the training partition, we postprocess the outputs
as described in [3] to correct for scale and bias. For pre-
dicting arousal and valence on the test set, the state-space
system parameters were estimated only on the development
set to prevent overfitting.

The system performance is quantified using the concor-
dance correlation coefficient (CCC, [46]) as proposed for the
MASC competition in AVEC 2016. We also computed Pear-
son’s correlation coefficient (CC) which is the upper limit of
the CCC. A significantly lower CCC with respect to CC
would indicate that the bias and scale in the predicted state
are not similar to the gold standard ratings. In order to
examine if the CCC from different experiments are signifi-
cantly different, we convert them into a z-score with Fisher’s
r-to-z transformation. The z-scores are then compared using
formula 2.8.5 (pg. 54) from [47] returning a p-value from a
two-tailed t-test. We use the number of frames per subject
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Table 2: Unimodal performance using CCC on the
development set

Modality Arousal Valence
Audio+TEMFCC 0.800 0.448
Video-appearance 0.481 0.474
Video-geometric 0.297 0.612
SD-EDA 0.080 0.178
ECG 0.272 0.159
HRHRV 0.383 0.298

(7501) as the sample size in the test2. This test is typi-
cally used for comparing correlation coefficients. Since CCC
is proportional to CC and has the same range (-1 to 1),
we can use this method to compare two independent CCCs
without loss of generality.

3.4 Results and Discussion
The CCC values for unimodal performance in predicting

arousal and valence separately are shown in Table 2. Re-
sults show comparable unimodal performance for audio+
TEMFCC features with the baseline[3]. Although increased
performance with TEMFCC features compared to MFCC
was shown in noisy environments as described in [41], no
significant improvement in performance is observed here due
to the audio recordings being mostly clean speech. SD-EDA
features perform somewhat better than that of the baseline
EDA, SCL and SCR features (approximately 1% improve-
ment for arousal and 7% for valence). This shows the utility
of shape-based methods for extracting SCL and SCR fea-
tures as proposed in [38] rather than statistical moments.
Detailed analyses and further processing of the SD-EDA fea-
tures for A-V recognition tasks would be a part of our future
work.

The CCC for multimodal performance of the proposed
Systems 1-3 is shown in Table 3. The baseline performance
on the development set as reported in [3] and that obtained
using leave-one-subject-out method is also shown for com-
parison. Overall, we have achieved a better performance for
predicting arousal than valence consistent with existing lin-
ear modeling frameworks. The relatively lower performance
of predicting valence is likely due to the non-linearities in
the relationship between the low-level features and valence
ratings. Additionally, we assume the evolution of valence
dimension to be linear and time-invariant (i.e., represented
by the state dynamics matrix, A in equation 2). Our future
work would involve additional experiments which can verify
these assumptions.

We observe a positive correlation between the gold stan-
dard ratings of arousal and valence in the MASC data (CC
= 0.42 for training, CC = 0.56 for development set). Con-
sistent with this, a significant improvement is achieved by
using the predicted arousal as an additional observation in
predicting valence (System 1 < System 2; p < 0.01) 3.
This is consistent with previous studies that observe inter-
correlations between arousal and valence [14].

The system performance is further improved upon us-
ing the conditional framework to select different Kalman
filters during online tracking (System 3; see Algorithm 1).
Both arousal and valence predictions are significantly higher
(p < 0.01) compared to Systems 1-2. Furthermore, the per-
formance of System 3 is better than that of the baseline
system obtained through leave-one-subject out method on

2http://www.quantpsy.org/corrtest/corrtest.htm
3all p-values are reported on a two-tailed t-test

Table 3: Leave-one-subject-out (LOSO) multimodal
performance using CCC

Method Arousal Valence

Development set
Baseline [3] 0.820 0.702
Baseline with LOSO 0.793 0.659
System 1 with LOSO 0.783 0.624
System 2 with LOSO 0.783 0.702
System 3 with LOSO 0.824 0.718

Test set
Baseline [3] 0.682 0.638
System 3 0.703 0.681

the development set. Both arousal and valence predictions
were significantly higher (p < 0.01 for both). The CCC
for our best performance on the test set is shown in Table
3 alongside baseline test results for comparison. The pro-
posed system outperforms the baseline system (statistically
significant; p ≈ 0.01). Although both the linear regres-
sion approach for late fusion used in the baseline system
and the proposed approach are linear models, Kalman fil-
tering has the added benefit of tracking an affect dimension
online and continuously by propagating the predicted state
in time. Since the dimension of the state being tracked is
fixed, choosing different Kalman filters in our conditional
framework is possible.

On examining the subject-specific performance on the de-
velopment set, we note that the CCC is the least for those
subjects that have significantly lower variance of the gold
standard ratings than that of the training partition. Since
the state equation parameters are estimated over the train-
ing partition, this could lead to using a state dynamics ma-
trix that models fast dynamics instead of a slow dynamics.
Finally, less than 1% difference is observed between CCC
and CC of the final outputs which indicates accurate esti-
mation of the bias terms. Additional experiments conducted
where the System 2 is modified to use Kalman smoothing
instead of filtering do not yield significantly different results.
This indicates that arousal and valence evolve causally, per-
haps evidence of the way in which the annotations were per-
formed to acquire gold standard ratings.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a linear dynamical systems per-

spective to perform late fusion of arousal and valence predic-
tions from multiple modalities. Unimodal predictions from
linear SVR are modeled as noisy observations and used to
perform a continuous online tracking of the affect state.
Leveraging the inter-correlations between arousal and va-
lence; and with a conditional framework to select among
different multimodal Kalman filters during online tracking,
we are able to outperform the baseline for predicting arousal
and valence respectively. The proposed approach could be
extended for other multimodal fusion tasks to track contin-
uous behavioral codes.

In light of evidence of superior performance of LSTM com-
pared to SVR, we intend to test a recurrent LSTM neural
networks as a part of our future work to improve unimodal
performance. Arousal and valence ratings typically have
slow dynamics; this can be used to adaptively update the
state dynamics matrix based on the past segment of the
predicted state instead of assuming these dynamics to be
time-invariant.
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[9] M. Kächele, M. Schels, and F. Schwenker, “Inferring
depression and affect from application dependent meta
knowledge,” in Proceedings of the 4th International
Workshop on Audio/Visual Emotion Challenge.
ACM, 2014, pp. 41–48.

[10] H. Kaya, F. Eyben, A. A. Salah, and B. Schuller,
“CCA based feature selection with application to
continuous depression recognition from acoustic
speech features,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014, pp. 3729–3733.

[11] L. Chao, J. Tao, M. Yang, Y. Li, and Z. Wen,
“Multi-scale temporal modeling for dimensional
emotion recognition in video,” in Proceedings of the

4th International Workshop on Audio/Visual Emotion
Challenge. ACM, 2014, pp. 11–18.

[12] Y. Gu, E. Postma, and H.-X. Lin, “Vocal emotion
recognition with log-gabor filters,” in Proceedings of
the 5th International Workshop on Audio/Visual
Emotion Challenge. ACM, 2015, pp. 25–31.

[13] L. Chao, J. Tao, M. Yang, Y. Li, and Z. Wen, “Long
short term memory recurrent neural network based
multimodal dimensional emotion recognition,” in
Proceedings of the 5th International Workshop on
Audio/Visual Emotion Challenge. ACM, 2015, pp.
65–72.

[14] M. A. Nicolaou, H. Gunes, and M. Pantic,
“Continuous prediction of spontaneous affect from
multiple cues and modalities in valence-arousal space,”
IEEE Transactions on Affective Computing, vol. 2,
no. 2, pp. 92–105, 2011.

[15] T. R. Almaev and M. F. Valstar, “Local Gabor binary
patterns from three orthogonal planes for automatic
facial expression recognition,” in Proceedings of the
2013 Humaine Association Conference on Affective
Computing and Intelligent Interaction, ser. ACII ’13.
Washington, DC, USA: IEEE Computer Society, 2013,
pp. 356–361.

[16] A. Metallinou, C.-C. Lee, C. Busso, S. Carnicke, and
S. S. Narayanan, “The USC creativeit database: A
multimodal database of theatrical improvisation,” in
Multimodal Corpora: Advances in Capturing, Coding
and Analyzing Multimodality (MMC), Valletta, Malta,
May 2010.

[17] S. C. Müller and T. Fritz, “Stuck and frustrated or in
flow and happy: Sensing developers’ emotions and
progress,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 688–699.

[18] V. Vapnik, S. E. Golowich, and A. Smola, “Support
vector method for function approximation, regression
estimation, and signal processing,” in Advances in
Neural Information Processing Systems 9. MIT
Press, 1996, pp. 281–287.

[19] M. Grimm, K. Kroschel, E. Mower, and S. Narayanan,
“Primitives-based evaluation and estimation of
emotions in speech,” Speech Commun., vol. 49, no.
10-11, pp. 787–800, Oct. 2007.

[20] B. Han, S. Rho, R. Dannenberg, and E. Hwang,
SMERS: Music emotion recognition using support
vector regression, 12 2009, pp. 651–656.

[21] H. Xianyu, X. Li, W. Chen, F. Meng, J. Tian, M. Xu,
and L. Cai, “SVR based double-scale regression for
dynamic emotion prediction in music,” in 2016 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), March 2016, pp.
549–553.

[22] G. Caridakis, L. Malatesta, L. Kessous, N. Amir,
A. Raouzaiou, and K. Karpouzis, “Modeling
naturalistic affective states via facial and vocal
expressions recognition,” in Proceedings of the 8th
International Conference on Multimodal Interfaces,
ser. ICMI ’06. New York, NY, USA: ACM, 2006, pp.
146–154.

[23] M. A. Nicolaou, H. Gunes, and M. Pantic,
“Audio-visual classification and fusion of spontaneous

65



affective data in likelihood space,” in Pattern
Recognition (ICPR), 2010 20th International
Conference on, Aug 2010, pp. 3695–3699.

[24] D. Kulic and E. A. Croft, “Affective state estimation
for human x2013;robot interaction,” IEEE
Transactions on Robotics, vol. 23, no. 5, pp. 991–1000,
Oct 2007.
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