

Context Adaptations for Improving Child Automatic Speech Recognition

Manoj Kumar¹, Daniel Bone¹, Kelly McWilliams², Shanna Williams², Thomas D. Lyon² and Shrikanth Narayanan¹

¹Signal Analysis and Interpretation Lab, USC

²USC Child Interviewing Lab

Motivation

- ASR forms a crucial component in automatic understanding of spoken language
- Child ASR is a harder problem than Adult ASR (Lee et al '99)
- Behavioral cues from adult speech are indicative of child mental state
 - Paralinguistic behavior & Natural language use provide cues of ASD severity
 (Bone '14, Kumar '16)
 - Prosodic features vary significantly with child's engagement levels (Gupta '16)

We hypothesize that **context helps in speech recognition**, during **both automatic** speech recognition and **human** speech recognition

Objective

Understanding child spoken behavior during adult-child interactions

- Improving child automatic speech recognition (ASR)
- Borrow information from the context of interaction
- Understand type & effect of context on ASR

Forensic Interviews

→ Child maltreatment: One of the most serious threats to children's

well-being (Norman '12, Fang '12)

- → Need for **systematic interview format** with both recall and recognition questions.
- → Objective methods to train attorneys w.r.t linguistic and paralinguistic behavior

Datasets

Training Corpora

- **CUKids:** Read speech including isolated words, sentence & stories
- CHIMP: Spontaneous speech data collected while playing video game
- OGI: Prompted & spontaneous speech including alphabets and sentences
- **Librispeech:** Read speech corpora of audio books

Evaluation Corpus

- Forensic Interviews: Spontaneous conversational speech
 - 30 children from age group 4 -12 yrs

Adaptation Results I

	Adult Speech	Child Speech	WER(%)	Mean Perplexity
Baseline	Data: Librispeech <i>(100hrs)</i> AM: 7-layer TDNN LM: Tri-gram	Data: CUKids+CHIMP+OGI (80hrs) AM: 7-layer DNN LM: Tri-gram	73.39	431
Domain adapt. (3.7 hrs)	LM: Linear interpolation	LM: Linear Interpolation AM: Re-train baseline with adaptation data	62.47	247
Session adapt. (~8min)	-	LM: Linear interpolation	61.04 (Global) 52.69 (Local)	207 193

Significant improvements in WER and perplexity over baseline

Adpatation Results II

Do context-based benefits vary by age?

We analyze overall improvement in session adaptation over baseline

Larger improvements for older children possibly due to more accurate adult speech recognition

Adaptation Results III

Does direction of context affect child ASR?

We repeat session-adaptation by conditioning on the number of context utterances

# Utts	1	2	3	4
Forward	53.98	54.30	53.58	54.40
Backward	50.78	49.41	49.15	47.47
Combined	52.69	50.80	49.66	49.55

- Forward direction independent of context size It does not matter how far we listen ahead
- Backward direction improves with context size Interviewer borrows word-counts from child speech

HSR (Listening) Experiment

Does context aid in human speech recognition?

We asked 3 native English speakers to transcribe the test data under two conditions:

Without context By listening to only current utterance (WER:27.08)

With context
 Listening to previous & following utterance; followed by current utterance (WER: 22.49)

Adult: OK AND WHO DOES < name > SHARE A ROOM WITH?

Child: NOBODY JUST COOKIE MONSTER

Adult: JUST COOKIE MONSTER OK AND WHO DOES < name > SHARE A ROOM WITH?

20.4% relative WER improvement with inclusion of context

Conclusions

Conclusion

- Conditioning on the interlocutor's speech improves child ASR
- Session-level adaptation beneficial only when localized

Future Work

- Incorporate semantic information during LM adaptation topic models, dialogue completion systems (Serban '15)
- Automatically select context for adaptation

Acknowledgement

This work was supported by funding from National Institutes of Health (NIH) and National Science Foundation (NSF)

Thank You!